
The Challenges of Implicit Programming by Example
Jean-David Ruvini

Bouygues e-lab
1 avenue Eugène Freyssinet
78061 St Quentin en Yvelines

jdruvini@bouygues.com

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces.

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
End-user programming, programming by example, adaptive
interfaces, machine learning.

1. INTRODUCTION
It is evidence that users of interactive applications perform a lot of
repetitive actions and commands while manipulating their
software. To offer end-users the possibility to automate these
tedious repetitions, early interactive applications proposed script
languages, allowing to write programs that can be later on
invoked to perform a repetition within a single mouse-click or
key-stroke. However, script languages are not widely used
because they require efforts and programming knowledge that
many users do not have and because writing (and debugging!) a
program often takes longer than performing the repetition
manually. These obstacles are often referred as the “just-in-time
programming” problem [12].

A significant step toward alleviating repetitions has been achieved
with Programming by Example [2], [10] (PbE, also called
Programming by Demonstration). Built around the macro recorder
metaphor, PbE systems let the user demonstrate through examples
what the task to automate should do and create a program
(containing variables, iterative loops or conditional branches)
from observing this demonstration. Although spectacular
progresses have been made in PbE (see for example SMARTedit
[8]), the old macro recorder metaphor where the user is explicitly
involved in the program creation process (he has to start and stop
the recorder) is still dominant.

In this paper we focus on what we call implicit Programming by
Example which aims at offering end-users the possibility to
automate complex repetitions with the minimum of user’s
intervention and effort. More precisely, implicit PbE is based on
two key ideas. First, it avoids the macro recorder metaphor as the

user does not have to start and stop a recorder; the repetitions are
automatically detected from observing the user’s behavior and
programs to automate them are automatically inferred. Second, it
makes use of the assistant metaphor as the system anticipates
repetitions and automatically offers assistance when appropriate.
Implicit PbE solves the just-in-time programming problem as the
user never enters a programming process and is automatically
suggested help when appropriate.

Keeping user’s effort as low as possible is important for several
reasons. First, there are some situations where the recorder
approach is just inapplicable. This is the case for instance in the
pervasive computing model where the user might not be fully
aware of the computers surrounding him. Second, the user might
not be aware of all the repetitions he is performing. This is the
case with repetitions that spread over several work sessions or
several days. Third, inferring the correct program from a few
examples is difficult. As a consequence, explicit PbE system can
rarely guarantee to the user if and how he will be paid back for his
efforts, increasing the risk of frustration. Alternatively, since users
do not make any effort in implicit PbE, every correct suggestion
the system makes is bonus. Furthermore, experiments [14] have
suggested that, as far as the system globally achieves reasonable
performances, incorrect suggestions do not hurt.

However, we do not claim that explicit PbE is doomed to failure
since many applications require the “teacher” metaphor. Also, an
advantage of explicit PbE is that it can provide automation as
soon as the second repetition whereas implicit PbE requires at
least two iterations of a repetition before offering any automation.

The goal of this paper is to propose a state-of-the-art in implicit
PbE. It is structured as follows: First, we briefly review related
work in the area of PbE. Second, we identify the technical
difficulties of implicit PbE, describe the solutions proposed so far
and suggest directions for future research. In the third part, we
review some metrics to measure the effectiveness of implicit PbE
systems. The paper concludes with a summary.

2. IMPLICIT VS. EXPLICIT PBE
Programming by Example found a broad audience application in
interactive software through macro recorders. Although macro
recorders are still present in most of today’s applications, they are
not widely used. Potter [12] identified a set of obstacles,
collectively referred as the just-in-time programming problem,
that typically dissuade users:
1. The effort of demonstrating the macro to record, including

judging if recording a new macro is appropriate and the
efforts the user might expend correcting inevitable errors.

2. Limited computational generality since macro recorders
perform rote learning, making the macro useless in situations
not exactly identical to the situation in which it was recorded.

Copyright is held by the author/owner(s).
IUI’04, January 13–16, 2004, Madera, Funchal, Portugal.
ACM 1-58113-815-6/04/0001.

3. The effort of invoking the macro including judging if it is
appropriate and applicable, remembering how to invoke it.

4. Risk since demonstrating the macro may take longer than
expected or longer than performing the repetition manually.

Solutions to solve these problems came from two correlated areas
of research, namely PbE and Predictive Interfaces. PbE research
has mainly focused on solving the computational generality
problem while Predictive Interfaces research focused on the
demonstration, invocation and risk problems. However, the
distinction between PbE systems and Predictive Interfaces has
blurred and we claim that the distinction should now be made
between explicit PbE systems which require explicit and active
participation from the user and implicit PbE systems which
minimize as little as possible user’s intervention and efforts. We
propose below a brief review of two decades of research in PbE
and Predictive interfaces based on this distinction. For a broader
view, the reader can refer to [2] and [10].

Explicit PbE systems are designed around the “teacher” metaphor
where the user teaches to the computer through examples how to
perform a specific task and are able to learn sophisticated
programs containing variables, conditionals, recursions or
iterations. Recent examples are Toontalk [4] a programming
environment for children implemented as a video game, and
Grammex [9], an agent that learns recursive grammar rules for
text parsing. Explicit PbE also includes systems that solve some
of the other just-in-time programming problems. For instance
SMARTedit [8], designed to automate repetitive text-editing
procedures, lets the user perform manually a few iterations of a
task, learns from these iterations and is able to offer to complete
the task automatically. It is an explicit PbE system because it
requires the user to start and stop a recorder but it also minimizes
invocation efforts since it automatically offers some automation
when appropriate.

Implicit PbE systems minimize user’s efforts and intervention.
Building on Predictive Interfaces research, they typically draw on
machine learning to learn correlations between situations the user
encounters and the corresponding actions he performs, and assist
him by suggesting to perform automatically some part of user’s
work. There is no special learning or recording mode the user has
to activate and he implicitly trains the system by simply using it.
They avoid any demonstration effort and minimize invocation
efforts using a suggestion mechanism. Famous examples are,
among others, Maes’s assistants [11] which advise users for some
application specific operations like managing mails or selecting
articles in news or WebWatcher [1], an assistant for the world
wide web, that suggests links of interest to the user. However,
these systems offer automation for simple tasks only. Modern
implicit PbE systems have contributed to increase computational
generality of implicit PbE systems while keeping user’s effort to a
minimum. For instance Eager [2], an assistant for the HyperCard
environment, is able to detect the first iterations of a loop in the
user’s behavior and to propose to complete the loop until a
“condition” is satisfied. APE [13], an assistant for a programming
environment, offers to automate repetitive sequences of actions or
commands, to complete loops or to write repetitive portions of
code. It extends Eager in that it offers automation even if the
different iterations of these repetitions are not consecutive in the
user’s history of actions.

3. TECHNICAL SPECIFICITIES
Implicit PbE systems watch over the shoulder of the user, detect
repetitions in his behavior and automatically offer to automate
these repetitions when appropriate. The task of an implicit PbE
system can be split in two sub-tasks: first, learning what to
automate (the repetitions) from observing the user’s behavior;
second, learning when to make a suggestion to the user. In the
next sections we detail these two tasks and describe the
approaches proposed so far.

In this paper we call “history of user’s actions” the sequence of
the actions the user performs in a work session. Actions can be
low level events like key-strokes and mouse-clicks or high level
events corresponding to specific domain dependant operations
(like opening a file). This flat model of the user’s behavior is
common-place in PbE.

3.1 LEARNING WHAT TO AUTOMATE
The advantage of the macro recorder approach is that when he
presses the start and stop buttons, the user explicitly marks the
beginning and end of one (or more) iteration of the repetition and
thus provides a useful pattern for predicting further iterations. The
main difficulty of implicit PbE is that the system has to identify
the iterations without any explicit intervention from the user,
particularly when these iterations are similar but not exactly the
same. We identify several kinds of repetitions of interest in
implicit PbE:
• Constant: all the iterations of the repetition are identical.

Repeatedly inserting a table with a specific number of rows
and columns in a text processor is an example:

On the Table menu, point to Insert table.
In the Number of Columns list, click 4.
In the Number of Rows list, click 10.
Click OK.

• Loop: all the iterations comprise the same actions but are
repeated over a set of objects. Formatting all the pictures in a
document is an example:

For each picture P in current document
 Select P.
 Click Add border.

Click Center.

• Nested loops: iterations are identical but embedded in two
nested loops. Example:

For each document D in current folder
 Edit D
 For each picture P in D
 Select P.

 Click Add border.

• Conditional loop: iterations are identical but are repeated over
a set of objects exhibiting a certain property.

For each message m in MailBox
 Select m.
 If SenderOf(m) is Tessa
 Then Forward m to Dan.

• Variable loop: the iterations are repeated over a set of objects
and depend on a property of the object.

For each message m in MailBox
 Select m.
 Save m to ‘SubjectOf(m)’.txt.

Constant repetitions can be easily detected by searching for
repetitions in the user’s history. This approach is adopted by APE
using the KMR algorithm [5]. The main limitation of APE is that
it unable to detect a repetition if the order in which the actions are
performed varies from an iteration to the next. In the table
formatting example above, the user may sometimes set the
number of rows before setting the number of columns. Also,
because of the KMR algorithm, APE is not incremental.

Detecting a loop in the user’s behavior requires the system to
identify, from a few iterations, the body of the loop and the set of
objects over which the body is repeated. Eager was one of the first
implicit PbE systems able to detect loops in the user’s behavior.
APE extends Eager in that it is able to automate loops even if the
iterations are not consecutive in the user’s history (i.e. interleaved
with non repetitive actions). In the loop example above, this
occurs if the user performs some non repetitive operations on each
newly modified picture before processing the next picture. Each
time APE finds a constant repetition (using the KMR algorithm,
as explained above) it assumes it is a loop candidate and checks if
it has been iterated over objects belonging to the same set. To this
end, it compares the actions immediately preceding (resp.
following) the occurrences of the repetition using a similarity
measure based on predefined sets like sequences of integers, days
of the week, alphabetic sequences, “files in the same folder”,
“subclasses of the same class”, etc. APE is, again, limited by the
fact that the KRM algorithm is not incremental and does not
detect repetitions when the order of the composing action varies.
Also, both APE and Eager are limited in that they use some
predefined domain dependant similarity measure to detect loops.

Using the technique described for loop automation above, and
with the same limitations, APE detects and automates nested
loops.

Conditional loops and variable loops are more difficult to detect.
We are not aware of any implicit PbE system automating them.
Clearly, the difficulty lies in the fact that the iterations are all
different (no action repeats exactly) making iteration
identification impossible with repetition searching algorithms.

We have shown in this section that learning what to automate in
implicit PbE is based on two processes, namely identifying
iteration examples and inferring a predictive pattern from these
potential examples. The approaches proposed for the first process,
identifying examples, have two limitations. First, they are not
incremental. However, incremental mining of sequential patterns
is an important subject of research in data mining, suggesting a
direction for future research. Second, they are cases where
repetition searching algorithms are not appropriate. This is the
case, for instance, when the order in which the user has performed
the actions composing them varies (action ordering problem) or
for conditional and variable loops where iterations have few
syntactic similarities. We believe that a promising solution
consists in recording user’s actions in a structured, multi-level
history as proposed by Kosbie and Myers [6]. For example,
Figure 1 depicts a structured representation of a high-level “Save-
Mail” action which includes a "Save-As" action, which itself
includes lower level actions. Such a representation clearly solves
the action ordering and syntactic dissimilarity problems since they
reduce to detecting the repetition of a higher level action.

Figure 1. A multi-level representation of a "Save-Mail"
action.

The approaches proposed for the second process, inferring a
predictive pattern from potential examples are limited in that they
rely on some predefined domain dependant operator to identify
the objects over which the iterations are repeated, and to predict
future iterations. Lau and Weld [7] made a significant step
towards domain independent operator. They have shown that
repetition automation can be seen as a prediction problem:
predicting the next iterations from previous iterations. This allows
PbE systems to use various machine learning algorithms to
predict next iterations. However, the detected potential examples
of previous iterations may not all fall in the same iterative task, or
may not fall at all in an iterative task. In other words, rather than
strictly trying to predict next iterations from all the examples,
implicit PbE system have to be able to examine several alternative
hypotheses about the iterative task at hand. Lau et al [8] proposed
an interesting algorithm to achieve this goal based on a structured
representation of the user behavior similar to the multi-level
history described above.

3.2 LEARNING WHEN TO MAKE A
SUGGESTION
Implicit PbE systems, and most modern explicit PbE systems, are
built around the assistant metaphor. Once they have identified
some repetitions in the user’s behavior and learned how to
automate them, they have to determine when to offer to the user
to perform them on his behalf.

We explained in the previous section that Eager assumes that loop
iterations are always consecutive in the user’s history. This
limitation is also a strength since it allows Eager to determine
easily when to make a suggestion and what to suggest: as soon as
it detects two consecutive iterations of a loop, it offers to
complete the loop. Alternatively, APE does not assume
consecutive repetitions. As a consequence it has to determine,
after each user’s action, if he is about to perform something
repetitive and if it can offer some assistance. APE builds on
predictive interface research and uses machine learning to model
correlations between the situations the user encounters and the
repetitions he performs. It afterward uses the learnt model to
predict user’s action and anticipate repetitions. More precisely,
APE takes into account the situations in which the user performed
a repetition but also the situations in which he did not. It learns
two models of the user’s behavior, a model to predict if the user is
about to perform a repetition and, if he is, a model to predict
which repetition he is more likely to perform.

As we explained, learning when to make a suggestion to the user
is a typical machine learning problem and future advances will
probably come from this area of research. Some authors, however,

have shown that some specificity can be taken into account to
improve the performance of these algorithms. For instance,
Davison et al [3] suggested to weight recent actions more highly
using an exponential decay function. Yoshida et al [15]
demonstrated the interest of integrating meta-knowledge (the flow
of information between commands) in the representation of the
user’s history. Finally, we believe that meta-learning techniques
like boosting or error correcting output code could
advantageously benefit from the user’s think time to improve the
learnt models.

4. MEASURING EFFECTIVENESS
An important issue in implicit PbE is to measure the quality and
effectiveness of the suggestions of an implicit PbE system. It can
be evaluated using to measures from information retrieval called
precision and recall. In the setting of implicit PbE, precision can
be defined as the proportion of correct suggestions the system
makes and recall as the proportion of repetitions for which the
system makes a correct suggestion (i.e. correctly anticipated and
suggested). Ruvini et Dony [13] also suggested to take into
account the proportion of suggestions the system makes when no
suggestion is expected. Table 1 defines precision, recall and
excess according to a confusion matrix.

 The user performed

 R Not R Nothing
R a b c

Not R d
Nothing e

Precision =
da

a
+

 Recall =
ba

a
+

 Excess =
ec

c
+

Tableau 1. Definition of precision, recall and excess in implicit
PbE.

We did not address in this paper the problem of suggestion
readability and presentation. Clearly, they have to be as
unobtrusive as possible to minimize cost of prediction errors.
Also, the number of suggestions the system makes to the user has
to be thought carefully. Too few suggestions limit system recall
while too many suggestions put a workload on the user to browse
through the list of suggestions. APE solves this problem by
presenting suggestions in an independent window that the user
can resize, deciding implicitly how many suggestions are
presented.

5. SUMMARY
Programming by Example research focuses on making computer
easier to use by alleviating users from tedious repetitions. In this
paper we emphasized the distinction between explicit PbE based
on the macro recorder metaphor and implicit PbE. Implicit PbE
systems minimize as little as possible user’s intervention and
efforts. They watch over the shoulder of the user, detect
repetitions in his behavior and automatically offer to automate
these repetitions when appropriate.

We explained that the task of an implicit PbE system can be split
in two subtasks, learning what to automate (the repetitions) and
learning when to make a suggestion. We reviewed the main

technical difficulties they raise and we showed that both propose
interest challenges to data mining and machine learning research.

6. REFERENCES
[1] Armstrong, R. and Freitag, D. and Joachims, T and Mitchell,

T. “Webwatcher: A Learning Apprentice for the World Wide
Web”. In AAAI Spring Symposium on Information
Gathering, 1995.

[2] Cypher, A. “Watch What I Do: Programming by
Demonstration”. MIT Press, Cambridge, MA, 1993.

[3] Davison, B. and Hirsh, H. “Probabilistic Online Action
Prediction”. In Proceedings of the AAAI Spring Symposium
on Intelligent Environments, 1998.

[4] Kahn, K. “Generalizing by Removing Detail: How any
Program Can Be Created by Working With Examples”. In H.
Lieberman editor, Your Wish is My Command:
Programming by Example, Morgan Kaufmann Publishers,
Boston, 2001.

[5] Karp, R.M. and Miller, R.E. and Rosenberg, A.L. “Rapid
Identification of Repeated Patterns in Strings, Trees and
Arrays”. In Proceedings of the Fourth Annual Symposium on
Theory of Computing, ACM Press, p. 1-3, Denver, 1972.

[6] Kosbie, D.S. and Myers, B.A. “A System-Wide Macro
Facility Based on Aggregate Events: A Proposal”. In A.
Cypher editor, Watch What I do: Programming by
Demonstration, MIT Press, London, 1993.

[7] Lau, T. and Weld, D.S. “Programming by Demonstration: An
Inductive Learning Formulation”. In Proceedings of IUI’99,
ACM, Redondo Beach, CA, 1999.

[8] Lau, T. and Wolfam, S.A. and Domingos, P. and Weld, D.
“Programming by Demonstration Using Version Space
Algebra”. Machine Leaning, 53(1):111-156, 2003.

[9] Lieberman, H. and Nardi, B. A. and Wright, D. J. “Training
Agents to Recognize Text by Example”. In H. Lieberman
editor, Your Wish is My Command: Programming by
Example, Morgan Kaufmann Publishers, Boston, 2001.

[10] Lieberman, H. “Your Wish is My Command: Programming
by Example”. Morgan Kaufmann Publishers, Boston, 2001.

[11] Maes, P. “Agents that reduce work and information
overload”. Communications of the ACM, Special Issue on
Intelligent Agents, 37(7):31-40, 1994.

[12] Potter, R. “Just-in-Time Programming”. In A. Cypher, editor,
Watch What I do: Programming by Demonstration, MIT
Press, London, England, 1993.

[13] Ruvini, J.D. and Dony, C. “Learning User’s Habits to
Automate Repetitive Tasks”. In H. Lieberman editor, Your
Wish is My Command: Programming by Example, Morgan
Kaufmann Publishers, Boston, 2001.

[14] Ruvini, J.D. “Do Users Tolerate Errors From Their
Assistant? Experiments with an E-mail Classifier”. In
Proceedings of IUI’02, ACM, San Francisco, pp. 216-217,
2002.

[15] Yoshida, K. and Motoda, H. “Automated User Modeling for
Intelligent Interface”. International Journal of Human
Computer Interaction, 3(8):237-258, 1996.

Th
e

sy
st

em
 p

re
di

ct
ed

