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1. INTRODUCTION 
It is evidence that users of interactive applications perform a lot of 
repetitive actions and commands while manipulating their 
software. To offer end-users the possibility to automate these 
tedious repetitions, early interactive applications proposed script 
languages, allowing to write programs that can be later on 
invoked to perform a repetition within a single mouse-click or 
key-stroke. However, script languages are not widely used 
because they require efforts and programming knowledge that 
many users do not have and because writing (and debugging!) a 
program often takes longer than performing the repetition 
manually. These obstacles are often referred as the “just-in-time 
programming” problem [12]. 

A significant step toward alleviating repetitions has been achieved 
with Programming by Example [2], [10] (PbE, also called 
Programming by Demonstration). Built around the macro recorder 
metaphor, PbE systems let the user demonstrate through examples 
what the task to automate should do and create a program 
(containing variables, iterative loops or conditional branches) 
from observing this demonstration. Although spectacular 
progresses have been made in PbE (see for example SMARTedit 
[8]), the old macro recorder metaphor where the user is explicitly 
involved in the program creation process (he has to start and stop 
the recorder) is still dominant. 

In this paper we focus on what we call implicit Programming by 
Example which aims at offering end-users the possibility to 
automate complex repetitions with the minimum of user’s 
intervention and effort. More precisely, implicit PbE is based on 
two key ideas. First, it avoids the macro recorder metaphor as the 

user does not have to start and stop a recorder; the repetitions are 
automatically detected from observing the user’s behavior and 
programs to automate them are automatically inferred. Second, it 
makes use of the assistant metaphor as the system anticipates 
repetitions and automatically offers assistance when appropriate. 
Implicit PbE solves the just-in-time programming problem as the 
user never enters a programming process and is automatically 
suggested help when appropriate. 

Keeping user’s effort as low as possible is important for several 
reasons. First, there are some situations where the recorder 
approach is just inapplicable. This is the case for instance in the 
pervasive computing model where the user might not be fully 
aware of the computers surrounding him. Second, the user might 
not be aware of all the repetitions he is performing. This is the 
case with repetitions that spread over several work sessions or 
several days. Third, inferring the correct program from a few 
examples is difficult. As a consequence, explicit PbE system can 
rarely guarantee to the user if and how he will be paid back for his 
efforts, increasing the risk of frustration. Alternatively, since users 
do not make any effort in implicit PbE, every correct suggestion 
the system makes is bonus. Furthermore, experiments [14] have 
suggested that, as far as the system globally achieves reasonable 
performances, incorrect suggestions do not hurt. 

However, we do not claim that explicit PbE is doomed to failure 
since many applications require the “teacher” metaphor. Also, an 
advantage of explicit PbE is that it can provide automation as 
soon as the second repetition whereas implicit PbE requires at 
least two iterations of a repetition before offering any automation. 

The goal of this paper is to propose a state-of-the-art in implicit 
PbE. It is structured as follows: First, we briefly review related 
work in the area of PbE. Second, we identify the technical 
difficulties of implicit PbE, describe the solutions proposed so far 
and suggest directions for future research. In the third part, we 
review some metrics to measure the effectiveness of implicit PbE 
systems. The paper concludes with a summary. 

2. IMPLICIT VS. EXPLICIT PBE 
Programming by Example found a broad audience application in 
interactive software through macro recorders. Although macro 
recorders are still present in most of today’s applications, they are 
not widely used. Potter [12] identified a set of obstacles, 
collectively referred as the just-in-time programming problem, 
that typically dissuade users: 
1. The effort of demonstrating the macro to record, including 

judging if recording a new macro is appropriate and the 
efforts the user might expend correcting inevitable errors. 

2. Limited computational generality since macro recorders 
perform rote learning, making the macro useless in situations 
not exactly identical to the situation in which it was recorded. 
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3. The effort of invoking the macro including judging if it is 
appropriate and applicable, remembering how to invoke it. 

4. Risk since demonstrating the macro may take longer than 
expected or longer than performing the repetition manually. 

Solutions to solve these problems came from two correlated areas 
of research, namely PbE and Predictive Interfaces. PbE research 
has mainly focused on solving the computational generality 
problem while Predictive Interfaces research focused on the 
demonstration, invocation and risk problems. However, the 
distinction between PbE systems and Predictive Interfaces has 
blurred and we claim that the distinction should now be made 
between explicit PbE systems which require explicit and active 
participation from the user and implicit PbE systems which 
minimize as little as possible user’s intervention and efforts. We 
propose below a brief review of two decades of research in PbE 
and Predictive interfaces based on this distinction. For a broader 
view, the reader can refer to [2] and [10]. 

Explicit PbE systems are designed around the “teacher” metaphor 
where the user teaches to the computer through examples how to 
perform a specific task and are able to learn sophisticated 
programs containing variables, conditionals, recursions or 
iterations. Recent examples are Toontalk [4] a programming 
environment for children implemented as a video game, and 
Grammex [9], an agent that learns recursive grammar rules for 
text parsing. Explicit PbE also includes systems that solve some 
of the other just-in-time programming problems. For instance 
SMARTedit [8], designed to automate repetitive text-editing 
procedures, lets the user perform manually a few iterations of a 
task, learns from these iterations and is able to offer to complete 
the task automatically. It is an explicit PbE system because it 
requires the user to start and stop a recorder but it also minimizes 
invocation efforts since it automatically offers some automation 
when appropriate. 

Implicit PbE systems minimize user’s efforts and intervention. 
Building on Predictive Interfaces research, they typically draw on 
machine learning to learn correlations between situations the user 
encounters and the corresponding actions he performs, and assist 
him by suggesting to perform automatically some part of user’s 
work. There is no special learning or recording mode the user has 
to activate and he implicitly trains the system by simply using it. 
They avoid any demonstration effort and minimize invocation 
efforts using a suggestion mechanism. Famous examples are, 
among others, Maes’s assistants [11] which advise users for some 
application specific operations like managing mails or selecting 
articles in news or WebWatcher [1], an assistant for the world 
wide web, that suggests links of interest to the user. However, 
these systems offer automation for simple tasks only. Modern 
implicit PbE systems have contributed to increase computational 
generality of implicit PbE systems while keeping user’s effort to a 
minimum. For instance Eager [2], an assistant for the HyperCard 
environment, is able to detect the first iterations of a loop in the 
user’s behavior and to propose to complete the loop until a 
“condition” is satisfied. APE [13], an assistant for a programming 
environment, offers to automate repetitive sequences of actions or 
commands, to complete loops or to write repetitive portions of 
code. It extends Eager in that it offers automation even if the 
different iterations of these repetitions are not consecutive in the 
user’s history of actions. 

3. TECHNICAL SPECIFICITIES 
Implicit PbE systems watch over the shoulder of the user, detect 
repetitions in his behavior and automatically offer to automate 
these repetitions when appropriate. The task of an implicit PbE 
system can be split in two sub-tasks: first, learning what to 
automate (the repetitions) from observing the user’s behavior; 
second, learning when to make a suggestion to the user. In the 
next sections we detail these two tasks and describe the 
approaches proposed so far. 

In this paper we call “history of user’s actions” the sequence of 
the actions the user performs in a work session. Actions can be 
low level events like key-strokes and mouse-clicks or high level 
events corresponding to specific domain dependant operations 
(like opening a file). This flat model of the user’s behavior is 
common-place in PbE. 

3.1 LEARNING WHAT TO AUTOMATE 
The advantage of the macro recorder approach is that when he 
presses the start and stop buttons, the user explicitly marks the 
beginning and end of one (or more) iteration of the repetition and 
thus provides a useful pattern for predicting further iterations. The 
main difficulty of implicit PbE is that the system has to identify 
the iterations without any explicit intervention from the user, 
particularly when these iterations are similar but not exactly the 
same. We identify several kinds of repetitions of interest in 
implicit PbE: 
• Constant: all the iterations of the repetition are identical. 

Repeatedly inserting a table with a specific number of rows 
and columns in a text processor is an example: 

On the Table menu, point to Insert table.  
In the Number of Columns list, click 4.  
In the Number of Rows list, click 10. 
Click OK. 

• Loop: all the iterations comprise the same actions but are 
repeated over a set of objects. Formatting all the pictures in a 
document is an example: 

For each picture P in current document  
   Select P. 
   Click Add border. 

Click Center. 

• Nested loops: iterations are identical but embedded in two 
nested loops. Example: 

For each document D in current folder 
    Edit D 
    For each picture P in D 
        Select P. 

      Click Add border. 

• Conditional loop: iterations are identical but are repeated over 
a set of objects exhibiting a certain property. 

For each message m in MailBox 
     Select m. 
     If SenderOf(m) is Tessa 
         Then Forward m to Dan. 

• Variable loop: the iterations are repeated over a set of objects 
and depend on a property of the object. 

For each message m in MailBox 
    Select m. 
    Save m to ‘SubjectOf(m)’.txt. 



Constant repetitions can be easily detected by searching for 
repetitions in the user’s history. This approach is adopted by APE 
using the KMR algorithm [5]. The main limitation of APE is that 
it unable to detect a repetition if the order in which the actions are 
performed varies from an iteration to the next. In the table 
formatting example above, the user may sometimes set the 
number of rows before setting the number of columns. Also, 
because of the KMR algorithm, APE is not incremental. 

Detecting a loop in the user’s behavior requires the system to 
identify, from a few iterations, the body of the loop and the set of 
objects over which the body is repeated. Eager was one of the first 
implicit PbE systems able to detect loops in the user’s behavior. 
APE extends Eager in that it is able to automate loops even if the 
iterations are not consecutive in the user’s history (i.e. interleaved 
with non repetitive actions). In the loop example above, this 
occurs if the user performs some non repetitive operations on each 
newly modified picture before processing the next picture. Each 
time APE finds a constant repetition (using the KMR algorithm, 
as explained above) it assumes it is a loop candidate and checks if 
it has been iterated over objects belonging to the same set. To this 
end, it compares the actions immediately preceding (resp. 
following) the occurrences of the repetition using a similarity 
measure based on predefined sets like sequences of integers, days 
of the week, alphabetic sequences, “files in the same folder”, 
“subclasses of the same class”, etc. APE is, again, limited by the 
fact that the KRM algorithm is not incremental and does not 
detect repetitions when the order of the composing action varies. 
Also, both APE and Eager are limited in that they use some 
predefined domain dependant similarity measure to detect loops.  

Using the technique described for loop automation above, and 
with the same limitations, APE detects and automates nested 
loops. 

Conditional loops and variable loops are more difficult to detect. 
We are not aware of any implicit PbE system automating them. 
Clearly, the difficulty lies in the fact that the iterations are all 
different (no action repeats exactly) making iteration 
identification impossible with repetition searching algorithms. 

We have shown in this section that learning what to automate in 
implicit PbE is based on two processes, namely identifying 
iteration examples and inferring a predictive pattern from these 
potential examples. The approaches proposed for the first process, 
identifying examples, have two limitations. First, they are not 
incremental. However, incremental mining of sequential patterns 
is an important subject of research in data mining, suggesting a 
direction for future research. Second, they are cases where 
repetition searching algorithms are not appropriate. This is the 
case, for instance, when the order in which the user has performed 
the actions composing them varies (action ordering problem) or 
for conditional and variable loops where iterations have few 
syntactic similarities. We believe that a promising solution 
consists in recording user’s actions in a structured, multi-level 
history as proposed by Kosbie and Myers [6]. For example, 
Figure 1 depicts a structured representation of a high-level “Save-
Mail” action which includes a "Save-As" action, which itself 
includes lower level actions. Such a representation clearly solves 
the action ordering and syntactic dissimilarity problems since they 
reduce to detecting the repetition of a higher level action. 

 

Figure 1. A multi-level representation of a "Save-Mail" 
action. 

The approaches proposed for the second process, inferring a 
predictive pattern from potential examples are limited in that they 
rely on some predefined domain dependant operator to identify 
the objects over which the iterations are repeated, and to predict 
future iterations. Lau and Weld [7] made a significant step 
towards domain independent operator. They have shown that 
repetition automation can be seen as a prediction problem: 
predicting the next iterations from previous iterations. This allows 
PbE systems to use various machine learning algorithms to 
predict next iterations. However, the detected potential examples 
of previous iterations may not all fall in the same iterative task, or 
may not fall at all in an iterative task. In other words, rather than 
strictly trying to predict next iterations from all the examples, 
implicit PbE system have to be able to examine several alternative 
hypotheses about the iterative task at hand. Lau et al [8] proposed 
an interesting algorithm to achieve this goal based on a structured 
representation of the user behavior similar to the multi-level 
history described above. 

3.2 LEARNING WHEN TO MAKE A 
SUGGESTION 
Implicit PbE systems, and most modern explicit PbE systems, are 
built around the assistant metaphor. Once they have identified 
some repetitions in the user’s behavior and learned how to 
automate them, they have to determine when to offer to the user 
to perform them on his behalf. 

We explained in the previous section that Eager assumes that loop 
iterations are always consecutive in the user’s history. This 
limitation is also a strength since it allows Eager to determine 
easily when to make a suggestion and what to suggest: as soon as 
it detects two consecutive iterations of a loop, it offers to 
complete the loop. Alternatively, APE does not assume 
consecutive repetitions. As a consequence it has to determine, 
after each user’s action, if he is about to perform something 
repetitive and if it can offer some assistance. APE builds on 
predictive interface research and uses machine learning to model 
correlations between the situations the user encounters and the 
repetitions he performs. It afterward uses the learnt model to 
predict user’s action and anticipate repetitions. More precisely, 
APE takes into account the situations in which the user performed 
a repetition but also the situations in which he did not. It learns 
two models of the user’s behavior, a model to predict if the user is 
about to perform a repetition and, if he is, a model to predict 
which repetition he is more likely to perform. 

As we explained, learning when to make a suggestion to the user 
is a typical machine learning problem and future advances will 
probably come from this area of research. Some authors, however, 



have shown that some specificity can be taken into account to 
improve the performance of these algorithms. For instance, 
Davison et al [3] suggested to weight recent actions more highly 
using an exponential decay function. Yoshida et al [15] 
demonstrated the interest of integrating meta-knowledge (the flow 
of information between commands) in the representation of the 
user’s history. Finally, we believe that meta-learning techniques 
like boosting or error correcting output code could 
advantageously benefit from the user’s think time to improve the 
learnt models.  

4. MEASURING EFFECTIVENESS 
An important issue in implicit PbE is to measure the quality and 
effectiveness of the suggestions of an implicit PbE system. It can 
be evaluated using to measures from information retrieval called 
precision and recall. In the setting of implicit PbE, precision can 
be defined as the proportion of correct suggestions the system 
makes and recall as the proportion of repetitions for which the 
system makes a correct suggestion (i.e. correctly anticipated and 
suggested). Ruvini et Dony [13] also suggested to take into 
account the proportion of suggestions the system makes when no 
suggestion is expected. Table 1 defines precision, recall and 
excess according to a confusion matrix. 

               The user performed 

 R Not R Nothing 
R a b c 

Not R d   
Nothing   e 

 

Precision = 
da

a
+

   Recall =
ba

a
+

    Excess =
ec

c
+

 

Tableau 1. Definition of precision, recall and excess in implicit 
PbE. 

We did not address in this paper the problem of suggestion 
readability and presentation. Clearly, they have to be as 
unobtrusive as possible to minimize cost of prediction errors. 
Also, the number of suggestions the system makes to the user has 
to be thought carefully. Too few suggestions limit system recall 
while too many suggestions put a workload on the user to browse 
through the list of suggestions. APE solves this problem by 
presenting suggestions in an independent window that the user 
can resize, deciding implicitly how many suggestions are 
presented. 

5. SUMMARY 
Programming by Example research focuses on making computer 
easier to use by alleviating users from tedious repetitions. In this 
paper we emphasized the distinction between explicit PbE based 
on the macro recorder metaphor and implicit PbE. Implicit PbE 
systems minimize as little as possible user’s intervention and 
efforts. They watch over the shoulder of the user, detect 
repetitions in his behavior and automatically offer to automate 
these repetitions when appropriate. 

We explained that the task of an implicit PbE system can be split 
in two subtasks, learning what to automate (the repetitions) and 
learning when to make a suggestion. We reviewed the main 

technical difficulties they raise and we showed that both propose 
interest challenges to data mining and machine learning research. 
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