
Adapting to the User's Internet Search Strategy

Jean-David Ruvini

e-lab Bouygues SA
1avenue Eugène Freyssinet, 78061 St Quentin en Yvelines, France

jdruvini@bouygues.com
http://e-lab.bouygues.com

Abstract. World Wide Web search engines typically return thousands of results
to the users. To avoid users browsing through the whole list of results, search
engines use ranking algorithms to order the list according to predefined criteria.
In this paper, we present Toogle, a front-end to the Google search engine for
both desktop browsers and mobile phones. For a given search query, Toogle
first ranks results using Google’s algorithm and, as the user browses through
the result list, uses machine learning techniques to infer a model of her search
goal and to adapt accordingly the order in which the results are presented. We
describe preliminary experimental results that show the effectiveness of Toogle.

1 Introduction

Today World Wide Web search engines like Google, Altavista or AllTheWeb among
others search documents for user specified keywords and return a list of document
snippets (called results) where the keywords were found. With the vast amount of on-
line information sources available on the web, this list typically contains thousands of
results.

To deal with this amount of information, users have two choices : to browse
through the list of results which is often a tedious task or to repeatedly select new
keywords and query the search engine until they estimate they have selected the right
keywords and... it’s worth browsing the list! This problem is particularly critical on
small devices offering web browsing (like mobile phones) which generally have lim-
ited display and input capabilities, making browsing a very difficult task.

To limit the browsing process and to help users quickly locate relevant documents,
search engines use ranking algorithms to order the list according to certain criteria,
presenting relevant documents in the top of the list and less relevant documents below.
Criteria can include the number of keywords matched, proximity and frequency of
keywords, document length, number of links made to a document, number of times a
document is accessed from a result list and other factors. Alternatively, [8] proposed
to learn the ranking function from clickthrough data (the logfile of results the users
clicked on) of a group of users.

These ranking algorithms have two major limitations. First, they are global to all
users and do not adapt to a specific user and to a specific search session or query.

Second, they are exclusive in that they cannot be combined with - or, more precisely -
benefit from other ranking algorithms.

In this paper, we present ongoing research efforts to overcome these limitations that
leaded to the implementation of Toogle, an intelligent front-end to the Google search
engine. The Toogle hypothesis is that a typical browsing session over a list of results
where the user clicks on some results and ignore some others, conveys information
about his search goal. Toogle first ranks search results using Google’s algorithm and,
as the user steps through the result list, uses machine learning techniques to infer a
model of the user's search goal from clickthrough data and to adapt accordingly the
order in which results are presented. Toogle is available for both desktop computer
and wireless device web browsers but has been mainly designed to improve usability
of small devices.

This paper is structured as follows: First, we present Toogle’s interface. Second we
explain how it works. Third, we report preliminary experimental results for wireless
device web browsers. Fourth, we discuss related research. The paper concludes with a
summary of contributions and plans for future research.

2 Toogle: an Intelligent Front-end to Google

As we mentioned above, Toogle, as Google, is accessible from desktop internet
browsers and mobile phone offering web browsing, namely i-mode mobile phone.
First introduced in Japan in February 1999 by NTT DoCoMo, i-mode is one of the
world's most successful services (currently more than 41 millions subscribers in Ja-
pan) offering wireless World Wide Web (WWW) access and e-mail from mobile
phones. It was launched in France by Bouygues Telecom by November 2002.

For both their desktop and i-mode versions there is almost no difference, from the
user perspective, between Toogle and Google. Toogle is accessed from a web browser
and its homepage is a clone of Google’s homepage. To query Toogle, the user just has
to type in some keywords and to press the “Google Search” button exactly as he uses
to do with Google. Similarly, Toogle’s results are displayed in the same format as
Google’s results, grouped into pages that can be accessed individually from links
located at the bottom of the current result page. Figure 1(a)1 shows the homepage of
Toogle i-mode. Figure 1(b) and 1(c) show the result page of Toogle i-mode for the
query “korean restaurant new york”. Figure 1(b) presents the first lines of that result
page; on Figure 1(c) the user has scrolled down this page to review the first result.

There are few differences between desktop and i-mode versions of Toogle (respec-
tively Google). The main noticeable one is the number of results displayed on each
result page. Whereas desktop browser version displays 10 results per page, i-mode
version displays only 5 results per page. In the following we use “page” to refer with
no distinction to a list of 5 or 10 results.

The main reason why we have chosen to emulate Google rather than any other
search engine is that Google can be accessed programmatically using a web service

1 The i-mode emulator shown in Figure 1 is WAPAG (see http://www.wapag.com/).

programming toolkit (released by the Google corporation). This toolkit makes possi-
ble a simple proxy architecture for Toogle. When the user initiates a search query, the
query is first sent to Toogle and then forwarded to Google. The results returned by
Google are first processed by Toogle which then display them in the user’s browser.
Similarly, when the user clicks a proposed result to examine the corresponding docu-
ment, the document request is processed by Toogle. This architecture allows Toogle
to record the list of results presented to the user and which results she actually exam-
ined. It uses this information in the adaptation process described in the next section.

(a)

(b)

(c)

Fig. 1. The homepage (a) and a result page (b) and (c) of the i-mode versions of Google and
Toogle.

3 Adapting to the User’s Search Strategy

Toogle is based on the observation that there is not an exact mapping between
search queries and search goals. Since result lists typically present a lot of different
information, users may type the same query for accessing different documents and, as
a consequence, exhibit different browsing behaviors for that query. In other words, the
browsing behavior of the user for a given query depends on his search goal (or inter-
est).Toogle elaborates on this observation to infer, for a each search query, a model of

the user interest and to adapt the list of results accordingly. More precisely, it first
presents to the user the list of results proposed by Google with no modification. As the
user browses through the list, Toogle tries to infer a model of his search goal from his
browsing actions. It then uses this model to reorder the list of results the user has not
yet considered in order to present most relevant results first. In the following we ex-
plain how Toogle builds a model of the user’s interest and how and when it uses this
model to reorder the list.

3.1 Building a model of the user’s interest

Toogle’s goal is to build, for a given user U, a search query Q and its correspond-
ing list of results L, the following target function:

ResultInterestU,Q,L : Result → {0,1}
Given a result, the value of ResultInterestU,Q,L is interpreted as a measure of the in-

terest the user has in it. A value of 1 indicates that he has a strong interest in it and is
likely to click it to examine the corresponding document, whereas a value of 0 indi-
cates that he is not likely to examine the document.

Toogle uses a machine learning approach to build the ResultInterestU,Q,L function.
More precisely, because results are textual data, it employs a text classifier to learn it.
This approach requires to identify positive examples of results the user is likely to
click and negative examples i.e. results he is not likely to click. Remember that Toogle
(as Google) groups results into pages. For a given search query, Toogle considers,
within all the result pages the user has visited, results he has clicked as positive exam-
ples and the results he has not clicked as negative examples. Suppose for example
that, using an i-mode web browser (5 results per page), the user has clicked the results
ranked in position 3, 5 (first page) and 8 (second page) in the list. Toogle considers
results 3, 5 and 8 as positive examples and results 1, 2, 4, 6 and 7 as negative exam-
ples. The reason why Toogle uses the document snippets (results) rather than the
documents themselves is straightforward: whereas a click on a result provides an ex-
plicit indication of the interest the user has in it, it is difficult to draw any conclusion
about the content of a document from the fact that the user read it. Also, working with
results is possible even if some documents are not available (“page not found” status).

Once it has identified the examples, Toogle represents them in a text classifier ex-
ploitable form, namely the bag-of-words representation. It this representation, a result
is encoded as a feature vector, with each feature indicating the presence or absence of
a word. Table 1 shows an example of a Google result for the search query "french
food". A result is made of five main parts : the title of the document referenced by the
result, a snippet of the document where the keywords composing the search query
were found, a summary of the document, its category and its url. Some of these parts
may be absent from the result and it is often the case for the summary and the cate-
gory. Toogle makes no difference between the five parts of the results in the encoding.

Finally, if Toogle could identify at least one positive example and one negative ex-
ample, it invokes the text classifier to build the model of the user’s interest. Of course,
result pages the user has not visited are not taken into account in the learning process
(no example is extracted from them).

Since Toogle only uses document snippets, the problem has a small dimensionality
(the examples contain few words) and Toogle can learn very quickly with most of the
algorithms classically used for text classification. As a consequence, it can build a
model or revised a learned model, whenever it identifies a new positive example that
is to say whenever the user clicks a result. In its current implementation, Toogle’s
learning algorithm is the Support Vector Machine [16] which has been shown to
achieve excellent performances on textual data [4].

The learned ResultInterestU,Q,L function can be seen as a model of the user’s interest
relatively to the search query Q and the corresponding result list L. It is a short term
model since it is valid only in the lifetime of the query Q. In the next section we ex-
plain how this model is used.

Table 1. A Google result for the search query “french food”
French Food and Cook : French Dinner
French Food and Cook : the authentic French cuisine site. Best typical French
recipes and advice on French cooking. ... French Food and Cook : Home Page. ...
Description: Complete information on how to organize and cook a dinner, including
recipes.
Category: Home > Cooking > World Cuisines > European > French
www.ffcook.com/Cadres/Dinner.htm - 21k - Cached - Similar pages

3.2 Reordering the result list

To avoid disturbing the user by modifying the ranking of results on a page she has
visited, Toogle reorders only pages she has not visited yet. The reordering occurs
whenever she requests a new result page and involves three steps.

First, Toogle queries Google for more results and loads them in memory. However,
it does not load a single result page but several pages. The number of pages loaded
determines the number of results Toogle is able to take into account in the adaptation
process. Since the results are obtained from Google, the loaded list is ordered accord-
ing to the Google’s ranking criteria, from the most relevant to the least relevant result.

Second, it uses the text classifier and the learned user's model to classify the loaded
results. It then reorders the result list according to the predicted label : every result
classified as a positive example is considered as a potentially interesting one and is
moved to the top of the list (high ranks). Toogle locally preserves Google’s ranking in
that it does not perturb the relative ordering of positive examples and the relative
ordering of negatives examples : if results r is ranked higher than r' in Google’s order-
ing and r and r' have the same predicted label then r is ranked higher than r' in
Toogle’s ordering.

Finally, Toogle displays the 5 (i-mode) or the 10 (desktop browser) most relevant
results to the user, presenting the most relevant at the top of the result page and the
least relevant at the bottom. Suppose for example that, using an i-mode web browser
(5 results per page), the user has requested the result page number 3 (results 11 to 15).

Suppose also that Toogle has predicted that results 12, 17 and 23 (according to
Google’s ordering) may be of interest to the user. Toogle will display a result page

presenting (from top to bottom) results 12, 17, 23, 11 and 13. Results 11 and 13 are
negative examples but since they are the negative examples with the highest rank in
the Google’s ordering they are presented before any other negative example.

Of course, when the user submits a new search query to Toogle, it forgets every-
thing it has previously learned and start learning a new model specific to the new
query and the new search goal.

The next section presents preliminary experimental results.

Table 2. Toogle’s predictive accuracy and browsing gain for eight queries

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Mean

Pos. ex. 5 4 7 5 5 11 3 4 5.50

Neg. ex. 10 16 16 10 14 7 9 8 11.25

i-mode

NBC 22 93 77 50 50 58 71 14 54.48

SVM 100 80 100 80 72 54 72 100 82.25

Desktop

NBC 100 89 61 60 44 71 100 50 71.92

Pr
ed

ic
tiv

e
ac

cu
ra

cy

SVM 40 100 89 100 78 75 50 100 79.00

i-mode

Page 1 0 3 1 2 1 0 1 1.125

B
ro

w
si

ng

ga
in

Ratio 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.25

4 Experiment

The goal of the experiment presented here is to show that Toogle facilitates browsing
through a list of search engine results by reducing user's efforts and information over-
load. More precisely, it is to answer the two following questions :
1. Can text classification algorithms successfully learn the user’s interest from click-

through data?
2. Does Toogle reduce the number of result pages users have to browse?

We conducted a preliminary experiment by submitting to two users eight search
tasks using Google on an i-mode emulator. To avoid query formulation bias, the eight
search queries (and the corresponding search goals) were given to the users. One of
the users was a researcher of our laboratory while the other was a female computer
novice with no prior knowledge about i-mode. For the eight queries, the two users
exhibited the same browsing behavior (they clicked the same results).

Using a proxy architecture similar to the Toogle’s architecture, we recorded users'
browsing actions. Using these records we then simulated the users to feed Toogle with
their browsing actions and analyzed Toogle’s behavior. The results of this experiment
are presented in Table 2.

Column labels Q1 to Q8 refer to the eight queries used in the experiment. The table
comprises three parts. The first part, composed of the first two rows, lists the number
of positive (first row) and negative (second row) examples of each query. For a given
query, the positive examples are all the results the user clicked during the browsing
session and the negative examples all the results (up to the last positive example) she
did not click.
The second part gives the predictive accuracy of Toogle for both i-mode and desktop
browsers for two learning methods: the Support Vector Machine (SVM) and the Naïve
Bayes Classifier (NBC) [6]. We used the SVM-Light [7] implementation for the
SVM, and the Bow toolkit [14] for NBC.

To evaluate predictive accuracy, we split the example set in two sets : a training set
and a test set. For i-mode, the training set was constituted of the five first examples
(according to Google’s ranking), and of the ten first examples for desktop browser.
The training set was used to learn a user’s model and the test set to evaluate the
performance of this model. The predictive accuracy is the percent of examples of the
test set which label ("positive" or "negative") was correctly predicted. This Table
shows that Support Vector Machines achieve good performances (around 80%) for
both i-mode and desktop browsers. This is an interesting finding (which requires
further investigation) because it suggests that this method is able to learn a good user’s
model even when few training data are available which is often the case in the area of
User Modeling and Adaptive Interfaces. This is particularly true for the i-mode
version where the training set contained only five examples. Note that, although SVM
are known to be theoretically longer to train, we observed no significant difference
between NBC and SVM training time. As we mentioned earlier this is due to the fact
that the problem has a small dimensionality (few examples, few features).

The third part proposes an evaluation of the browsing gain for the end user of
Toogle, in term of "page gain" and of gain "ratio" on the basis of the SVM algorithm.
The page gain is defined as the difference between Google’s ordering and Toogle’s
ordering in the number of result pages the user has to visit to be able to click all the
interesting results (i.e. the positive examples). For instance, suppose that, on i-mode,
the last result the user has clicked is ranked in position 20 by Google and in position 7
by Toogle. Since an i-mode result page presents 5 results, result 20 appears on
Google’s page 4 whereas result 7 appears on Toogle’s page 2. In that case, the page
gain is 2.
The page gain must be considered with respect to the maximum possible gain. The
gain ratio measures how far from this optimal Toogle reordering is. Let GT be
Toogle’s page gain and GOpt be the maximum possible page gain for a given query.
The gain ratio is defined as:

Opt

T

G
GRatio −=1

Concerning i-mode, results presented in Table 2 are very encouraging. They show
that there is a real gain in using Toogle (page gain is optimal) for more most of the
queries (6 out of 8).

Since Toogle has been mainly designed to improve usability of i-mode WWW
search engines, the queries used in the experiment were strongly biased in disfavor of
desktop browsers. More precisely, since the search tasks submitted to the users re-
quired them to examine less than 21 results for most of the queries (the only exception

is query Q3), they had to visit only 2 result pages. Because in that case the page gain
can only be 0, results are not presented for desktop browsers in Table 2. However,
because Toogle exhibits a high prediction accuracy, we believe that further experi-
ments will show that its effectiveness on i-mode generalizes to desktop browsers.

Another interesting fact that does not appear in Table 2 is that Toogle is very con-
servative. There are two observations that support this claim. First, Toogle incorrectly
ranked a result lower than it was in Google’s ordering only once. It occurs for query
Q6 on desktop browser: result ranked 16 by Google was ranked 17 by Toogle. Sec-
ond, there is a particular case where Toogle’s prediction errors do not penalize the
user: when it predicts the same label for all the examples of the test set (all positive or
all negative). In that case Toogle’s reordering is identical to Google’s ordering. This
occurs for queries Q2 and Q7 where gain ratio is equal to 100%. In other words, when
Toogle is unsure about the user’s interest, it does not reorder the results.
The results of the preliminary experiment presented in this section show that Toogle is
clearly effective on i-mode browsers where it decreases the users' information over-
load. The next section details related systems.

5. Related work

Besides Toogle illustrates the application of adaptive hypermedia techniques [3] to
search engines, works related to Toogle can be grouped in four categories: browsing
assistants, small device usability, search engine optimization and relevance feedback.

Browsing assistants like Letizia [10], WebWatcher [9], SurfLen [5] or PageGather
[15] are similar to Toogle in that they recommend yet-unseen documents. As opposed
to WebWatcher, SurfLen and PageGather who incorporate knowledge about other
users, Letizia (like Toogle) estimates the visitor interest based solely on its actions
(links he followed, documents he bookmarked, etc.). Whereas these agents act as
guides and explicitly recommend documents to the user, Toogle is invisible and unob-
trusive and, as a consequence, has been integrated into a small device with limited
display capabilities.

Concerning small device usability, [1] proposed an algorithm for automatically
suggesting shortcut links in real time to users of wireless PDAs or cell phones. The
algorithm finds shortcuts by using a model of web visitor behavior learned on server
access logs. They have shown that using a mixture of Markov models, their algorithm
can save wireless visitors more than 40% of the possible link savings. This value can
be put in parallel with Toogle’s gain ratio of 25% which means that Toogle saves
users near 75% of the possible information overload saving.

Several techniques have been proposed to optimize search engines. [12] built (from
search engine access logs) Bayesian networks to model the dynamics of users’ search
activities. They have shown that these models can be used successfully to infer the
probability of the user’s next action, the time delay before taking the action and the
user’s informational goal. [2] used clickthrough data for identifying clusters of similar
queries and similar URLs. More recently, [13] proposed to use common sense reason-
ing to translate any search query into an effective query. Closer to Toogle, [8] pro-

posed to use clickthrough data to optimize the order in which results are presented to
the user. However, the proposed approach differs from our approach in that its goal is
not to adapt the ordering to a single user within the context of a specific search query,
but to learn a ranking algorithm from the browsing habits of a group of users, inde-
pendently of their queries. Another advantage of our approach over Joachims’s ap-
proach is that Toogle elaborates on an existing ordering and can benefit from any
search engine ranking algorithm (including Joachims’s algorithm) whereas Joachims’s
learned algorithm is used in replacement of any other ranking algorithm.

The closest work to Toogle [17] comes from relevance feedback research. Rele-
vance feedback in document retrieval systems is an iterative process wherein the set of
retrieved documents is updated based on the user’s feedback. The update phase typi-
cally consists in augmenting the user’s query with terms extracted from documents
marked as relevant by the user. In [17], the authors investigate implicit relevance
feedback where relevance is inferred from the user’s behavior. As Toogle, their sys-
tem first displays an ordered list of documents summaries and re-orders the list as the
user interacts with it. As opposed to Toogle it bases its implicit feedback model
around summary viewing time and uses term extraction techniques to infer user’s
search goal. Also, the authors do not address on search engine optimization and
browsing gain, particularly in the context of small devices.

6. Conclusion

In this paper, we presented Toogle, a front-end to the Google search engine, that re-
duces search engine users information overload by adapting to the user’s inferred
search goal the order in which search results are presented. Toogle first ranks results
using Google’s algorithm and, as the user steps through the result list, uses machine
learning techniques to build a model of his search goal and reorders the list of results
accordingly. A preliminary experiment shows that Toogle performs well in practice on
wireless phones offering WWW browsing, reducing substantially the number of result
pages the user has to visit. Toogle is unobtrusive and, since it elaborates over an exist-
ing ordering and locally preserve this ordering, can benefit from any ranking algo-
rithm.

Although the experimental results presented in this paper are encouraging, we need
to evaluate Toogle in depth through extensive experiments and user tests. We are
currently carrying these experiments. There are several possible directions of research
to improve Toogle. One direction is to increase the informative value of the text com-
posing the search results in order to facilitate the learning of the user’s search goal
model. For example, this can be done by adding a field “keywords” to the result de-
scription, containing the most informative words of the document referred by the re-
sult in respect with the other documents proposed in the result page. Since result pages
typically presents less than a dozen of results, these keywords could be extracted very
efficiently using classical term extraction. Another direction is to “take advantage of
the user think time” [11] to refine the learned model and increase the predictive per-

formance of Toogle. Several techniques have been proposed in the area of machine
learning (ensemble methods, re-sampling) to achieve this goal.

References

1. Anderson C. R, Domingos P. and Weld D. S. Adaptive web navigation for wireless devices.
In Proceeding. of the International Conference on Artificial Intelligence, Morgan Kauf-
mann, (2001).

2. Beeferman D. and Berger A. Agglomerative clustering of a search engine query log. In
Proceeding. of the International Conference on Knowledge Discovery and Data Mining,
ACM, (2000).

3. Brusilovsky, P. Methods and Techniques of Adaptive Hypermedia. User Modeling and
User-Adapted Interaction 6(2-3), (1996), 87-129.

4. Dumais S., Platt J., Heckerman D. and Sahami M. Inductive Learning Algorithms and Rep-
resentations for Text Classification. Proceedings of the International Conference on Infor-
mation and Knowledge Management, ACM, (1998), 148-155.

5. Fu X., Budzik, J. and Hammond K.J. Mining navigation history for recommendation. Pro-
ceedings of the International Conference on Intelligent User Interfaces, ACM, (2000).

6. Good I.J. The Estimation of Probabilities: An Essay on Modern Bayesian Methods. MIT
Press, (1965).

7. Joachims T. SVM-Light Support Vector Machine; (1999). http://svmlight.joachims.org/.
8. Joachims T. Optimizing Search Engine using Clickthrough Data. In Proceedings of the

ACM Conference on Knowledge Discovery and Data Mining, ACM, (2002).
9. Joachims T., Freitag D. And Mitchell T. WebWatcher: a Tour Guide for the World Wide

Web. In Proceeding of the Fifteenth International Conference on Artificial Intelligence,
Morgan Kaufmann, (1997).

10 Lieberman H. Letizia: An Agent That Assists Web Browsing. In Proceeding of the Fifteenth
International Conference on Artificial Intelligence, Morgan Kaufmann, Montreal, Canada,
(1995).

11. Lieberman, H. Autonomous Interface Agents. In Proceeding of the International Confer-
ence on Human Computer Interaction, ACM, (1997).

12. Lau T. And Horvitz E. Patterns of Search: Analyzing and Modeling Web Query Refine-
ment. In Proceedings of the International Conference on User Modeling, ACM, (1998).

13. Liu H., Lieberman H., Selker T. GOOSE: A Goal-Oriented Search Engine With Common-
sense. In Proceedings of the International Conference on Adaptive Hypermedia and Adap-
tive Web Based System, LNCS 2347, p. 253, (2002).

14. McCallum A. K. Bow: A toolkit for statistical language modeling, text retrieval, classifica-
tion and clustering, 1996. http://www.cs.cmu.edu/~mccallum/bow.

15. Perkowitz M. And Etzioni O. Towards adaptive web sites: conceptual framework and case
study. Artificial Intelligence Journal, 118(1-2), (2000).

16. Vapnik V. The Nature of Statistical Learning Theory. Springer-Verlag, New-York, (1995).
17. White R. W., I. Ruthven and J. M. Jose. Finding Relevant Documents Using Top Ranking

Sentences : An Evaluation of Two Alternative Schemes. In Proceedings of the 25th Interna-
tional Conference on Research and Development in Information Retrieval, ACM, 2002.

