
Adapting to the User's Internet Search Strategy
on Small Devices

Jean-David Ruvini
Bouygues e-lab

1 avenue Eugène Freyssinet
78061 St Quentin en Yvelines

jdruvini@bouygues.com

ABSTRACT
World Wide Web search engines typically return thousands of
results to the users. To avoid users browsing through the whole
list of results, search engines use ranking algorithms to order the
list according to predefined criteria. In this paper, we present
Toogle, a front-end to the Google search engine for mobile
phones offering web browsing. For a given search query, Toogle
first ranks results using Google’s algorithm and, as the user
browses through the result list, uses machine learning techniques
to infer a model of her search goal and to adapt accordingly the
order in which yet-unseen results are presented. We report
preliminary experimental results that show the effectiveness of
this approach.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques
– Interaction techniques, H.3.4 [Information Storage and
Retrieval]: Systems and Software – User profiles and alert
services.

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Internet search engine, mobile computing, adaptive interface,
machine learning.

1. INTRODUCTION
Today Word Wide Web search engines like Google, among
others, search documents for user specified keywords and return a
list of document snippets (called results) where the keywords were
found. With the vast amount of on-line information sources
available on the web, this list typically contains thousands of
results.

Because browsing through this list of results is often a tedious
task, particularly on small devices offering web browsing (like
mobile phones) which have limited display capabilities and to
help users quickly locate relevant documents, search engines use

ranking algorithms to order the list according to certain criteria
(like number of keywords matched, proximity and frequency of
keywords, etc.), presenting relevant documents in the top of the
list and less relevant documents below. Alternatively, [2]
proposed to learn the ranking function from clickthrough data (the
logfile of results the users clicked on) of a group of users.

These ranking algorithms have two major limitations. First, they
are global to all users and do not adapt to a specific user and to a
specific search session or query. Second, they are exclusive in that
they cannot be combined with or benefit from other ranking
algorithms.

In this paper, we present Toogle, an intelligent front-end to the
Google search engine that overcomes these limitations. Toogle
first ranks results using Google algorithm and, as the user steps
through the result list, uses machine learning techniques to infer a
model of the user's search goal from clickthrough data and to
adapt accordingly the order in which results are presented. Toogle
is available for both desktop and small wireless browsers but has
been mainly designed to improve usability of small devices.

2. TOOGLE : AN INTELLIGENT FRONT-
END TO GOOGLE
As we mentioned above, Toogle, as Google, is accessible from
desktop internet browsers and mobile phone offering web
browsing, namely i-mode mobile phone. First introduced in Japan
in February 1999 by NTT DoCoMo, i-mode is one of the world's
most successful services offering wireless World Wide Web
(WWW) access.

For both their desktop and i-mode versions there is almost no
difference, from the user perspective, between Toogle and the
Google search egine. Toogle is accessed from a web browser and
its homepage is a clone of Google homepage. To query Toogle,
the user just has to type in some keywords and to press the
“Google Search” button exactly as he uses to do with Google.
Similarly, Toogle results are displayed in the same format as
Google results, grouped into pages that can be accessed
individually from links located at the bottom of the current result
page.

Figure 1(a)1 shows the homepage of Toogle i-mode. Figure 1(b)
and 1(c) show the result page of Toogle i-mode for the query
“korean restaurant miami”. Figure 1(b) presents the first lines of
that result page; on Figure 1(c) the user has scrolled down this

1 The i-mode emulator shown in Figure 1 is I-MIMIC © X-9

DESIGN LAB (see http://www.x-9.com/).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright is held by the author/owner(s).
IUI’03, January 12–15, 2003, Miami, Florida, USA.
ACM 1-58113-586-6/03/0001.

(a)

(b)

(c)

Figure 1 The homepage 1(a) and a result page 1(b) and 1(c) of the i-mode versions of Toogle and Google.

page to review the first result proposed. The main difference
between desktop and i-mode versions of Toogle (respectively
Google) is the number of results displayed on each result page. It
is 10 for the desktop browser version and 5 for the i-mode
version.

Technically, Toogle acts as a proxy between Google and the user,
using a web service programming toolkit released by the Google
corporation.

3. ADAPTING TO THE USER’S SEARCH
STRATEGY
Toogle is based on the observation that there is not an exact
mapping between search queries and search goals. Since result
lists typically present a lot of different information, users may type
the same query for accessing different documents and, as a
consequence, exhibit different browsing behaviors for that query.
In other words, the browsing behavior of the user for a given
query depends on his search goal (or interest). Toogle elaborates
on this observation to infer, for a each search query, a model of
the user interest and to adapt the list of results accordingly by
reordering the list of results the user has not yet considered in
order to present most relevant results first.

3.1 Building a model of the user’s interest
Toogle goal is to build, for a given user U, a search query Q and
its corresponding list of results L, the following target function:

ResultInterestU,Q,L : Result → {0,1}
Given a result, the value of ResultInterestU,Q,L is interpreted as a
measure of the interest the user has in it. A value of 1 indicates
that he has a strong interest in it and is likely to click it to examine
the corresponding document, whereas a value of 0 indicates that
he is not likely to examine the document.

Toogle uses a machine learning approach to build the
ResultInterestU,Q,L function. More precisely, because results are
textual data (document snippets), it employs a text classifier to
learn it. This approach requires to identify positive examples of

results the user is likely to click and negative examples i.e. results
he is not likely to click. Remind that Toogle (as Google) groups
results into pages. For a given search query, Toogle considers,
within all the result pages the user has visited, results he has
clicked as positive examples and the results he has not clicked as
negative examples. Suppose for example that, using an i-mode
browser (5 results per page), the user has clicked the results
ranked in position 3 and 5 in the list. Toogle considers results 3
and 5 as positive examples and results 1, 2, 4 as negative
examples. Of course, result pages the user has not visited are not
taken into account in the learning process (no example is
extracted from them).

Once it has identified the examples, Toogle represents them in a
text classifier exploitable form, namely the bag-of-words
representation and invokes the text classifier to build the model of
the user’s interest. In its current implementation, Toogle learning
algorithm is the Support Vector Machine [4]. Toogle builds a
model or revises a learned model, whenever it identifies a new
positive example that is to say whenever the user clicks a result.

3.2 Reordering the result list
To avoid disturbing the user by modifying the ranking of results
on a page she has visited, Toogle reorders only pages she has not
visited yet. This hidden reordering occurs whenever she requests a
new result page and involves three steps.

First, Toogle queries Google for more results and loads them in
memory. Since these results are obtained from Google, they are
ordered according to the Google ranking criteria. Second, it uses
the text classifier and the learned user's model to classify the
loaded results. It then reorders the result list according to the
predicted label : every result classified as a positive example is
considered as a potentially interesting one and is moved to the top
of the list. Toogle locally preserves Google ranking in that it does
not perturb the relative ordering of positive examples and the
relative ordering of negatives examples : if results r is ranked
higher than r' in Google ordering and r and r' have the same
predicted label then r is ranked higher than r' in Toogle ordering.

Table 1. Predictive accuracy and browsing gain of the i-mode version of Toogle for eight queries.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Mean

Positive examples 5 4 7 5 5 11 3 4 5.50

Negative examples 10 16 16 10 14 7 9 8 11.25

NBC 22 93 77 50 50 58 71 14 54.48 Predictive

accuracy SVM 100 80 100 80 72 54 72 100 82.85

Page 2 0 3 2 3 0 0 2 1.50 Browsing

gain Ratio 0 100 0 25 47 71 100 0 42.87

Third, Toogle displays the results to the user, presenting the most
relevant at the top of the result page and the least relevant below.

As en example, suppose that, using an i-mode web browser (5
results per page), the user has requested result page number 2
(results 6 to 10) and that Toogle has predicted that results 7, 9 and
12 (according to the Google ordering) may be of interest to her.
Toogle then displays a result page presenting (from top to bottom)
results 7, 9, 12, 6 and 8. Results 6 and 8 are negative examples
but since they are the negative examples with the highest rank in
the Google ordering they are presented before any other negative
example.

Of course, whenever the user submits a new search query Toogle
forgets everything it has previously learned and start learning a
new model specific to the new query and the new search goal.

4. EXPERIMENT
The goal of the experiment presented here is to show that, on i-
mode, Toogle facilitates browsing through a list of search engine
results by reducing user's efforts and information overload. More
precisely, it is to answer the two following questions:

1. Can text classification algorithms successfully learn the
user’s interest from clickthrough data?

2. Does Toogle reduce the number of results users have to
consider and the number of result pages they have to browse?

We conducted a preliminary experiment by submitting to two
users (a researcher in our laboratory and a computer novice) eight
search tasks using Google on the I-MIMIC i-mode emulator. To
avoid query formulation bias the corresponding search queries
were also given to the users. Using a proxy architecture we
recorded users' browsing actions. Using these records we then
simulated the users to feed Toogle with their browsing actions and
analyzed Toogle behavior. For the eight tasks, the users exhibited
the same browsing behavior (they clicked the same results).

The results of this experiment are presented in Table 1. Column
labels Q1 to Q8 refer to the eight queries used in the experiment.
The table comprises three parts. The first part, composed of the
first two rows, lists the number of positive and negative examples
of each query. The second part gives the predictive accuracy of
Toogle for two learning methods: the Support Vector Machine
(SVM) and the Naïve Bayes Classifier (NBC). We used the SVM-
Light [1] implementation for the SVM, and the Bow toolkit [3]
for NBC. The predictive accuracy is defined as the fraction of
examples which label ("positive" or "negative") was correctly

predicted by Toogle when trained on the examples of the first
result page. The third part proposes an evaluation of the browsing
gain for the end user of Toogle, in term of "page gain" and of gain
"ratio" on the basis of the SVM algorithm. The page gain is
defined as the difference between Google ordering and Toogle
ordering in term of the number of result pages the user has to visit
to be able to click the same results. The gain ratio measures how
far from the optimal Toogle reordering is in term of ranks of the
positive examples.

This Table shows that Support Vector Machines achieve good
predictive accuracy (around 80%). This is an interesting finding
because it suggests that SVM are able to learn a user’s model
even when few training data are available which is often the case
in the area of User Modeling and Adaptive Interfaces. It also
shows that there is a real gain in using Toogle (page gain is at
least 2) for more than half of the queries (57%) and that Toogle
reordering is, on the average, at 42% from the optimal.

5. SUMMARY
In this paper, we presented Toogle, a front-end to the Google
search engine, that reduces search engine users information
overload by adapting to the user’s inferred search goal the order
in which search results are presented. Toogle first ranks results
using Google’s algorithm and, as the user steps through the result
list, uses machine learning techniques to build a model of his
search goal and reorders the list of results accordingly. A
preliminary experiment shows that Toogle performs well in
practice on wireless phones offering WWW browsing, reducing
substantially the number of result pages the user has to visit. Since
it elaborates over an existing ordering and locally preserve this
ordering, Toogle can benefit from any ranking algorithm.

6. REFERENCES
[1] Joachims T. SVM-Light Support Vector Machine; 1999.

http://svmlight.joachims.org/.

[2] Joachims T. Optimizing Search Engine using Clickthrough
Data. In Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining, ACM, 2002.

[3] McCallum A. K. Bow: A toolkit for statistical language
modeling, text retrieval, classification and clustering, 1996.
http://www.cs.cmu.edu/~mccallum/bow.

[4] Vapnik V. The Nature of Statistical Learning Theory.
Springer-Verlag, New-York, 1995.

