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ABSTRACT 
World Wide Web search engines typically return thousands of 
results to the users. To avoid users browsing through the whole 
list of results, search engines use ranking algorithms to order the 
list according to predefined criteria. In this paper, we present 
Toogle, a front-end to the Google search engine for mobile 
phones offering web browsing. For a given search query, Toogle 
first ranks results using Google’s algorithm and, as the user 
browses through the result list, uses machine learning techniques 
to infer a model of her search goal and to adapt accordingly the 
order in which yet-unseen results are presented. We report 
preliminary experimental results that show the effectiveness of 
this approach. 

Categories and Subject Descriptors 
I.3.6 [Computer Graphics]: Methodology and Techniques 
– Interaction techniques, H.3.4 [Information Storage and 
Retrieval]: Systems and Software – User profiles and alert 
services. 

General Terms 
Algorithms, Experimentation, Human Factors. 

Keywords 
Internet search engine, mobile computing, adaptive interface, 
machine learning. 

1. INTRODUCTION 
Today Word Wide Web search engines like Google, among 
others, search documents for user specified keywords and return a 
list of document snippets (called results) where the keywords were 
found. With the vast amount of on-line information sources 
available on the web, this list typically contains thousands of 
results. 

Because browsing through this list of results is often a tedious 
task, particularly on small devices offering web browsing (like 
mobile phones) which have limited display capabilities and to 
help users quickly locate relevant documents, search engines use 

ranking algorithms to order the list according to certain criteria 
(like number of keywords matched, proximity and frequency of 
keywords, etc.), presenting relevant documents in the top of the 
list and less relevant documents below. Alternatively, [2] 
proposed to learn the ranking function from clickthrough data (the 
logfile of results the users clicked on) of a group of users. 

These ranking algorithms have two major limitations. First, they 
are global to all users and do not adapt to a specific user and to a 
specific search session or query. Second, they are exclusive in that 
they cannot be combined with or benefit from other ranking 
algorithms. 

In this paper, we present Toogle, an intelligent front-end to the 
Google search engine that overcomes these limitations. Toogle 
first ranks results using Google algorithm and, as the user steps 
through the result list, uses machine learning techniques to infer a 
model of the user's search goal from clickthrough data and to 
adapt accordingly the order in which results are presented. Toogle 
is available for both desktop and small wireless browsers but has 
been mainly designed to improve usability of small devices. 

2. TOOGLE : AN INTELLIGENT FRONT-
END TO GOOGLE 
As we mentioned above, Toogle, as Google, is accessible from 
desktop internet browsers and mobile phone offering web 
browsing, namely i-mode mobile phone. First introduced in Japan 
in February 1999 by NTT DoCoMo, i-mode is one of the world's 
most successful services offering wireless World Wide Web 
(WWW) access. 

For both their desktop and i-mode versions there is almost no 
difference, from the user perspective, between Toogle and the 
Google search egine. Toogle is accessed from a web browser and 
its  homepage is a clone of Google homepage. To query Toogle, 
the user just has to type in some keywords and to press the 
“Google Search” button exactly as he uses to do with Google. 
Similarly, Toogle results are displayed in the same format as 
Google results, grouped into pages that can be accessed 
individually from links located at the bottom of the current result 
page. 

Figure 1(a)1 shows the homepage of Toogle i-mode. Figure 1(b) 
and 1(c) show the result page of Toogle i-mode for the query 
“korean restaurant miami”. Figure 1(b) presents the first lines of 
that  result page; on Figure 1(c) the user has scrolled down this 
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Figure 1 The homepage 1(a) and a result page 1(b) and 1(c) of the i-mode versions of Toogle and Google.

page to review the first result proposed. The main difference 
between desktop and i-mode versions of Toogle (respectively 
Google) is the number of results displayed on each result page. It 
is 10 for the desktop browser version and 5 for the i-mode 
version. 

Technically, Toogle acts as a proxy between Google and the user, 
using a web service programming toolkit released by the Google 
corporation. 

3. ADAPTING TO THE USER’S SEARCH 
STRATEGY 
Toogle is based on the observation that there is not an exact 
mapping between search queries and search goals. Since result 
lists typically present a lot of different information, users may type 
the same query for accessing different documents and, as a 
consequence, exhibit different browsing behaviors for that query. 
In other words, the browsing behavior of the user for a given 
query depends on his search goal (or interest). Toogle elaborates 
on this observation to infer, for a each search query, a model of 
the user interest and to adapt the list of results accordingly by 
reordering the list of results the user has not yet considered in 
order to present most relevant results first. 

3.1 Building a model of the user’s interest 
Toogle goal is to build, for a given user U, a search query Q and 
its corresponding list of results L, the following target function: 

ResultInterestU,Q,L : Result →  {0,1} 
Given  a result, the value of ResultInterestU,Q,L is interpreted as a 
measure of the interest the user has in it. A value of 1 indicates 
that he has a strong interest in it and is likely to click it to examine 
the corresponding document, whereas a value of 0 indicates that 
he is not likely to examine the document. 

Toogle uses a machine learning approach to build the 
ResultInterestU,Q,L function. More precisely, because results are 
textual data (document snippets), it employs a text classifier to 
learn it. This approach requires to identify positive examples of 

results the user is likely to click and negative examples i.e. results 
he is not likely to click. Remind that Toogle (as Google) groups 
results into pages. For a given search query, Toogle considers, 
within all the result pages the user has visited, results he has 
clicked as positive examples and the results he has not clicked as 
negative examples. Suppose for example that, using an i-mode 
browser (5 results per page), the user has clicked the results 
ranked in position 3 and 5 in the list. Toogle considers results 3 
and 5 as positive examples and results 1, 2, 4 as negative 
examples. Of course, result pages the user has not visited are not 
taken into account in the learning process (no example is 
extracted from them). 

Once it has identified the examples, Toogle represents them in a 
text classifier exploitable form, namely the bag-of-words 
representation and invokes the text classifier to build the model of 
the user’s interest. In its current implementation, Toogle learning 
algorithm is the Support Vector Machine [4]. Toogle builds a 
model or revises a learned model, whenever it identifies a new 
positive example that is to say whenever the user clicks a result.  

3.2 Reordering the result list 
To avoid disturbing the user by modifying the ranking of results 
on a page she has visited, Toogle reorders only pages she has not 
visited yet. This hidden reordering occurs whenever she requests a 
new result page and involves three steps. 

First, Toogle queries Google for more results and loads them in 
memory. Since these results are obtained from Google, they are 
ordered according to the Google ranking criteria. Second, it uses 
the text classifier and the learned user's model to classify the 
loaded results. It then reorders the result list according to the 
predicted label : every result classified as a positive example is 
considered as a potentially interesting one and is moved to the top 
of the list. Toogle locally preserves Google ranking in that it does 
not perturb the relative ordering of positive examples and the 
relative ordering of negatives examples : if results r is ranked 
higher than r' in Google ordering and r and r' have the same 
predicted label then r is ranked higher than r' in Toogle ordering.  



Table 1.  Predictive accuracy and browsing gain of the i-mode version of Toogle for eight queries.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Mean 

Positive examples 5 4 7 5 5 11 3 4 5.50 

Negative examples 10 16 16 10 14 7 9 8 11.25 

NBC 22 93 77 50 50 58 71 14 54.48 Predictive 

accuracy SVM 100 80 100 80 72 54 72 100 82.85 

Page 2 0 3 2 3 0 0 2 1.50 Browsing 

gain Ratio 0 100 0 25 47 71 100 0 42.87 

 
Third, Toogle displays the results to the user, presenting the most 
relevant at the top of the result page and the least relevant below. 

As en example, suppose that, using an i-mode web browser (5 
results per page), the user has requested result page number 2 
(results 6 to 10) and that Toogle has predicted that results 7, 9 and 
12 (according to the Google ordering) may be of interest to her. 
Toogle then displays a result page presenting (from top to bottom) 
results 7, 9, 12, 6 and 8. Results 6 and 8 are negative examples 
but since they are the negative examples with the highest rank in 
the Google ordering they are presented before any other negative 
example. 

Of course, whenever the user submits a new search query Toogle 
forgets everything it has previously learned and start learning a 
new model specific to the new query and the new search goal. 

4. EXPERIMENT 
The goal of the experiment presented here is to show that, on i-
mode, Toogle facilitates browsing through a list of search engine 
results by reducing user's efforts and information overload. More 
precisely, it is to answer the two following questions: 

1. Can text classification algorithms successfully learn the 
user’s interest from clickthrough data? 

2. Does Toogle reduce the number of results users have to 
consider and the number of result pages they have to browse? 

We conducted a preliminary experiment by submitting to two 
users (a researcher in our laboratory and a computer novice) eight 
search tasks using Google on the I-MIMIC i-mode emulator. To 
avoid query formulation bias the corresponding search queries 
were also given to the users. Using a proxy architecture we 
recorded users' browsing actions. Using these records we then 
simulated the users to feed Toogle with their browsing actions and 
analyzed Toogle behavior. For the eight tasks, the users exhibited 
the same browsing behavior (they clicked the same results).  

The results of this experiment  are presented in Table 1. Column 
labels Q1 to Q8 refer to the eight queries used in the experiment. 
The table comprises three parts. The first part, composed of the 
first two rows, lists the number of positive and negative examples 
of each query. The second part gives the predictive accuracy of 
Toogle for two learning methods: the Support Vector Machine 
(SVM) and the Naïve Bayes Classifier (NBC). We used the SVM-
Light [1] implementation for the SVM, and the Bow toolkit [3] 
for NBC. The predictive accuracy is defined as the fraction of 
examples which label ("positive" or "negative") was correctly 

predicted by Toogle when trained on the examples of the first 
result page. The third part proposes an evaluation of the browsing 
gain for the end user of Toogle, in term of "page gain" and of gain 
"ratio" on the basis of the SVM algorithm. The page gain is 
defined as the difference between Google ordering and Toogle 
ordering in term of the number of result pages the user has to visit 
to be able to click the same results. The gain ratio measures how 
far from the optimal Toogle reordering is in term of ranks of the 
positive examples. 

This Table shows that Support Vector Machines achieve good 
predictive accuracy (around 80%). This is an interesting finding 
because it suggests that SVM are able to learn a user’s model 
even when few training data are available which is often the case 
in the area of User Modeling and Adaptive Interfaces. It also 
shows that there is a real gain in using Toogle (page gain is at 
least 2) for more than half of the queries (57%) and that Toogle 
reordering is, on the average, at 42% from the optimal. 

5. SUMMARY 
In this paper, we presented Toogle, a front-end to the Google 
search engine, that reduces search engine users information 
overload by adapting to the user’s inferred search goal the order 
in which search results are presented. Toogle first ranks results 
using Google’s algorithm and, as the user steps through the result 
list, uses machine learning techniques to build a model of his 
search goal and reorders the list of results accordingly. A 
preliminary experiment shows that Toogle performs well in 
practice on wireless phones offering WWW browsing, reducing 
substantially the number of result pages the user has to visit. Since 
it elaborates over an existing ordering and locally preserve this 
ordering, Toogle can benefit from any ranking algorithm. 
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