
IBHYS: A New Approach to Learn Users Habits

Jean David Ruvini and Christophe Fagot
�ruvini, fagot�@lirmm.fr

LIRMM UMR 5506 CNRS-UMII
161, Rue Ada

34392 Montpellier Cedex 5, France
Tel.: +33 4 67 41 86 13 Fax: +33 4 67 41 85 00

Abstract

Learning interface agents search regularities in the user
behavior and use them to predict user’s actions. We pro-
pose a new inductive concept learning approach, called
IBHYS, to learn such regularities. This approach limits
the hypothesis search to a small portion of the hypothesis
space by letting each training example build a local ap-
proximation of the global target function. It allows to si-
multaneously search several hypothesis spaces and to si-
multaneously handle hypotheses described in different lan-
guages. This approach is particularly suited for learning
interface agents because it provides an incremental algo-
rithm with low training time and decision time, which does
not require, from the designer of the interface agent, to de-
scribe in advance and quite carefully the repetitive patterns
searched. We illustrate our approach with two autonomous
software agents, the Apprentice and the Assistant, devoted
to assist users of interactive programming environments
and implemented in Objectworks-Smalltalk-80. The Ap-
prentice learns user’s work habits using anIBHYS algo-
rithm and the Assistant, based on what has been learnt,
proposes to the programmer sequences of actions the user
might want to redo. We show, with experimental results on
real data, thatIBHYS outperformsID3 both in computing
time and predictive accuracy.

1 Introduction

The discovery of repetitive patterns in data is a challeng-
ing problem, which has a lot of applications in various
domains: fast text searching where patterns are strings of
symbols, data mining where patterns are association rules
and, particularly, learning interface agents where patterns
are sequences of users actions.

Learning interface agents [13] are software agents that
assist users of interactive environments by learning their
habits and preferences from experience and predicting what
they are going to do next. The problem of learning users
habits can be modeled as the task of searching repeated

patterns in the sequence of the actions the user has per-
formed during work sessions. These repetitive patterns can
be noisy (if the user does not perform each time exactly the
same sequence of actions), unordered (if the user perform
the same actions but not each time exactly in the same or-
der) or both noisy and unordered. Learning interface agents
would highly benefit from an incremental and low comput-
ing time algorithm to learn such general regularities, able
to predict user’s action in real time.

Although efficient algorithms have been proposed to
find exact or noisy repetitive patterns in strings [9, 24],
no algorithm, to our knowledge, solve the problem of
finding both noisy and unordered repetitive patterns. On
the other hand, machine-learning approaches like induc-
tive concept learning should theoretically be able to learn
such general regularities. However, most of the algorithms
([15, 20, 7, 6]) search hypothesis spaces to acquire the def-
inition of a target concept, and large and complex spaces
critically slow down the learning process. Therefore, this
approach fails to provide an efficient algorithm for learn-
ing interface agents because user’s actions can be described
with a lot of attributes with large set of possible values
and training examples generally belong to large hypothesis
spaces. Conversely, paradigms like instance-based learn-
ing [4] build a local approximation of the target function,
and limit the hypotheses search to a small portion of the
hypothesis space, but defer the processing of training ex-
amples until a new instance must be classified, and require
a lot of computing time to predict the target value for a new
instance. These paradigms are unable to provide an algo-
rithm to predict user’s actions in real time.

We provide here an alternative approach for learning
interface agents called instance-based hypothesis search
(IBHYS). As learning with radial basis functions [19]
which approximates the global target function by a com-
bination of local approximations, our approach lets each
training example build a set of hypotheses that locally ap-
proximate the global target function, limiting the hypoth-
esis search to a small portion of the hypothesis space.
However, as a generalization of learning with radial ba-

1

sis functions , it does not restrict the approximation to
a combination of Gaussian functions and allows to han-
dle simultaneously hypotheses described in different lan-
guages. This approach is particularly suited for learning
interface agents because it provides an incremental algo-
rithm with low training time and decision time, which does
not require, from the designer of the interface agent, to de-
scribe in advance and quite carefully the repetitive patterns
searched. By specifying several hypothesis spaces, he gives
the algorithm the potential to find various repetitive pat-
terns.

We illustrate our approach with two interface agents,
the Apprentice and the Assistant, that actively assist users
of the Smalltalk1 interactive programming environment.
This work finds its roots in the idea of programmer appren-
tices [23, 21] which were ambitious attempts to automat-
ically assist programmers in the task of code production.
This produced remarkable results but the task was certainly
too complex in whole generality and such apprentices are
not really integrated in todays standard programming en-
vironments. We propose to apply the techniques of au-
tonomous software agents [10, 14], to merge, eventually
extend, the above ideas. The Apprentice and the Assistant
aim at letting programmers focus on the essential part of
programming (design and write code) by automating the
achievement of repetitive tasks.

This paper summarizes the Apprentice-Assistant ar-
chitecture and focuses more particularly on the issues re-
lated to the learning task. Section 2 presents the Apprentice
and the Assistant, shows how users actions are recorded
and monitored, and defines the learning task. Section 3 de-
scribes our IBHYS approach, proposes a formalism, gives
a general procedure and shows how the Apprentice makes
use of this procedure to learn users habits. Section 4 gives
experimental results and shows that our IBHYS algorithm
outperforms the well known ID3 algorithm [20].

Related works
The idea of employing machine-learning in user-

modeling appeared with learning interface agents [22, 12,
14, 1] and begins to be studied in the user-modeling com-
munity [16, 18]. However, no incremental algorithm, with
low computing time have been proposed to solve the prob-
lem of learning repetitive patterns in whole generality.
Most of the existing learning interface agents [11, 1, 2, 17]
reduce the learning task to the prediction of a few attributes
with small set of possible values, and not at all try to pre-
dict complex actions like those performed in a program-
ming environment.

[14] studies the question of employing ID3 [20], a de-
cision tree algorithm, in a learning assistant for meeting
calendar management. However, by allowing their assis-

1ObjectWorks Smalltalk, copyright Parc-Place sys-
tems.

tant to spend several hours learning each night, the authors
do not propose a low computing time solution to learn users
habits.

The closest work to our agents are OpenSesame!.
OpenSesame! runs in background on Macintosh system
7, and learns repetitive tasks in opening and closing files or
applications, emptying trash, rebuilding desktop. Its first
weakness is that it is disruptive and frequently solicits the
user. Conversely, our Assistant only makes suggestions the
user is free to ignore and never request the user. OpenS-
esame! limits the learning task to a dozen of actions and
only learns noisy habits. Unfortunately, it appeared unable
to learn simple repetitive opening of folder when we have
tested it and the paper describing this system does not bring
any other information on this point.

Eager[3] is an interesting software that assists users of
the HyperCard environment by anticipating actions. Eager,
as Holte’s assistant for browsing in information libraries
[8], is unable to learn noisy or unordered repetitive patterns,
does not build a base of habits and forgets habits after it has
performed them.

Note that our multiple description languages approach,
allows to integrate the graph-based induction technique
used in [25], with benefit of low computing time and in-
crementallity.

2 The Apprentice and the Assistant

We illustrate the IBHYS approach with two interface
agents, the Apprentice and the Assistant, devoted to assist
users of interactive programming environments. Our Ap-
prentice learns user’s habits i.e. the tasks the user performs
repetitively for which he has not the opportunity or the will
to write scripts or macros. The Assistant’s task is to ac-
celerate and facilitate the programmers tasks by automat-
ing the achievement of repetitive tasks. Based on what the
Apprentice has learnt, the Assistant proposes, in a non-
obtrusive window the user is free to ignore, sequences of
actions the user might want to redo. Both of them operate
without explicit intervention of the user. The Apprentice
and the Assistant have been developed in Smalltalk 4.0 2.
Figure 1 shows a snapshot of a Smalltalk screen including
an assistant window in which the Assistant makes a sug-
gestion triggered by the opening of an exception window.

2.1 Monitoring User’s Actions

We define an action to be any interaction between the user
and the interface that affects an interface tool. By interface
tool we mean a software component of the Smalltalk envi-
ronment (browsers, debuggers, inspectors and editors). We

2We are currently working to adapt our agents to the newest version of
Smalltalk

Figure 1: The user has executed a program that has raised an exception. The Assistant window displays
a suggestion. It offers to open, move and resize a debugger. If the user accepts the suggestion by clicking
on it, the Assistant will automatically open a debugger, move and resize it as the user uses to do

naturally represent actions with Smalltalk objects. For ex-
ample, class ActionMenu models selection of an item in
a menu , class ActionList models selection of an item
in a list, class ActionSelect models text highlighting,
class ActionError models the opening of an error noti-
fication window and class ActionButtonmodels mouse
click on a button. Each class of actions defines instance
variables to store parameters for the action. In the follow-
ing, we will note actions Class(Tool,Parameter).
Let us call trace the ordered collection of all the actions
the user has performed during a work session. The figure 2

...

ActionSelect(aStringHolder,’anObject cass’)

ActionMenu(aStringHolder,doIt)

ActionError(nil,doesNotUnderstand)

ActionMenu(aDebugger,debug)

ActionMenu(aDebugger,move)

ActionMenu(aDebugger,resize)

ActionList(aDebugger,learn)

...

Figure 2: A sample of the trace

shows an example of a trace where the user opens a debug-

ger to correct an error.

2.2 The learning task

Our Assistant should be able to automatically select and
propose sequences of actions that the user might want to
redo. It has to detect situations in which these repetitive
tasks are not fulfilled and it has to avoid them by offering
to automate them. These repetitive tasks are all the - ex-
act, noisy or unordered, both noisy and unordered - repeti-
tive sequences of actions of the trace. The task of the Ap-
prentice is to build knowledge that precisely characterize
the situations in which these repetitive sequences should
be proposed to the user.

Let us call situation, for such a repetitive sequence, the
last � actions3 of the trace that immediately precede it. For
a given repetitive sequence, there are as many situations as
occurrences of this sequence. To characterize these situa-
tions, we make the hypothesis that they may be different
occurrences of a few situation patternswhich characterize
them. Therefore, in the machine-learning framework, the
task of the Apprentice can be seen as a concept learning
problem where each exact repetitive sequence of the trace
is a concept � which training examples are all the pairs of

3The value of n clearly depends on the application field, and is called
description length.

the form � �� � �, where � is a situation associated to �.
The Apprentice has to induce the general definitions of sit-
uation patterns given a set of training examples.

Let � be a repetitive sequence of actions, and let ��,
��, �� and lowercase letters from � to � denote actions.
We can distinguish 3 kinds of interesting situation patterns:

1. Noisy: For instance, the 2 training examples �
�����	���� � � and � ��
������� � � of
the trace “��������	���������
����������” can be
characterized by the situation pattern �� � �� � ���

where the stars denote differences called errors or
noiseon the whole actions or on the values of the at-
tributes of the actions.

2. Unordered: the training examples � ������� � �,
� ������� � � and � ������� � � can be char-
acterized by the pattern ��������.

3. Noisy and unordered: � ������ � � and �
��	��� � � can be characterized by the pattern
��� ����.

Figure 6 shows such examples of situation patterns.
The 3 kinds of patterns detailed above can be seen as 3
different kinds of hypotheses from 3 different hypothesis
spaces which suppose 3 different description languages of
the training example and the hypotheses. Therefore, the
task of the Apprentice is to find in this different hypothe-
sis spaces, the hypotheses that best explain the membership
of each training example (situation) to the related concept
(repetitive sequence).

3 IBHYS: the Instance-based Hypothesis
Search approach

3.1 A formal framework

The general framework of our work is called inductive con-
cept learning. Let � � ���� ��� ���� ��� denote a set of con-
cepts and � � �� � �� � ���� �� a set of training examples.
A training example is a pair of the form � � � � where
 is the description of the example and � 	 � the concept
to which the example belongs. Our approach aims at ac-
quiring the general definition of each concept � � 	 � from
the set �� of positive examples and the set �
 �� of neg-
ative examples. Precisely, it builds approximations, called
hypotheses, of each concept ��. Let � be the result of the
learning process, i.e. the set of hypotheses that actually ap-
proximate ��� ��� ���� ��. A hypothesis can be seen as a set of
constraints on the descriptions of the training examples. A
hypothesis � is said to matcha training example � � � �,
if satisfies all the constraints of � (conversely, � � � �
is said to satisfy �). Besides, � explains the membershipof
a positive example � � � � if � matches � � � � and �

aims at approximating �. Our approach has two important
advantages.

First, it does not explore a hypotheses space but builds
local approximations4 of the concepts of � by letting each
training example � � � � choose the most relevant hy-
potheses that correctly explain its membership to �. To
do so, some hypotheses are successively submitted to �
� � �. Using an evaluation criterion ([5]),� � � � is able
to compute the relevance of a hypothesis � for the concept
�. As a consequence, a training example � � � � has to
keep � the set of the most relevant hypotheses that cor-
rectly explain its membership to �.

Second, hypotheses of� can be expressed in different
description languages. The way the hypotheses are treated
in the algorithm, described in section 3.2, is independent
from their description; and the evaluation of the relevance
of the hypotheses is only based on the number of training
examples they match. A hypothesis � keeps two impor-
tant values: 1) ��� , the numbers of training examples that �
matches in each � 	 � (these values are used by the training
examples to measure the relevance of �). 2) ��

�
, the number

of elements of � that judge � relevant (this attribute allows
to remove from � a hypothesis that no training example
has chosen).

Finally, let us describe the three following operators:

1. MATCH: �� � IB
Data: a hypothesis �, a training example

� � � �
Result: true if � matches � � � �, and

false if � does not

This is the classical subsumption operator. As stated
above, our approach allows to handle several hypothe-
ses description languages, so the MATCH operator is
strongly linked to these description languages. In fact,
MATCH can be seen as a filter among several match-
ing operators, one per description language:

MATCH���� � � �� � ���������� � � ��

where � is expressed in the ��� description language,
and������ is the matching operator of this language.

2. SUBMIT: �� �� IR � ��

Data: a hypothesis �, a training example

� � � �, a threshold k
Result: updates the set of � regarding the

hypothesis h

The training example � � � � computes the rele-
vance of the hypothesis � (using [5]) for the concept
� and updates its set �. The hypothesis � may be:
1) relevant for � � � � (h matches � � � �), and is
added to �; 2) irrelevant for � � � � and � � � �

4� is a global approximation of the concepts of �, and each hypothesis
of � is a local approximation of a concept of �

rejects it. � � � � may possibly remove the less rel-
evant hypothesis in � if it must keep the size of �
constant. Besides, ��

�
is updated.

Regarding to the application field, the threshold � can
be used either to bound the size of �, or to set the
minimum relevance accepted to add any hypothesis in
�.

3. HYPGEN: � � �� ����

Data: a training example � � � �, a set
of objects �

Result: a set of hypotheses

HYPGEN is the hypotheses generation operator. ���
denotes the space of all the hypotheses that can be
generated. HYPGEN is strongly linked to the appli-
cation field, and allows hypotheses to be formed by
comparison between a training example� � � � and
a set of objects �. Hypotheses can be generated by
comparison with other training examples, hypotheses,
or any other objects useful for the hypotheses gener-
ation (in the procedure described after, � � � � �).
The main advantage of our approach is that it makes
possible to handle simultaneously several different de-
scription languages of the hypotheses. HYPGEN can
be seen as the combination of several hypothesis gen-
erators, one per description language:

HYPGEN�� � � �� �� �
��
������������ � � �

� ��

where ������� is the hypothesis generator for the
��� description language. Suppose � � � . Suppose
the training examples are described both by directed
graphs and conjunctions of attribute-value pairs. A
simple example of hypothesis generator outputs the
maximal tree included in � � � � and in all the de-
scription of the element of �. Another hypothesis
generator compares� � � � to all the elements of �.
For each pair (� � � �,� ��
 �) it returns a hypoth-
esis which description is constituted of the attribute-
value pairs that and � shares in common.

One of the interest of using multiple hypothesis gen-
erators can be evaluated easily. Suppose that train-
ing examples are described with � boolean features.
This leads potentially to an hypothesis space of �� ele-
ments. Suppose now, this set of � features can be split
in 3 disjoint sets of ��� features. These 3 sets lead to
3 hypothesis spaces of ��	�, and � � ��	� � �� .

3.2 A General Algorithm

We now give an illustration of the IBHYS approach
through a general procedure, called NewExample. The
main steps of this procedure are explained below. In the

following, � is the set of training examples currently avail-
able,� the set of the currently relevant hypotheses, and the
threshold � is used in the SUBMIT operator. Given a new
training example � � � �, the procedure updates the sets
� and �.

The most important steps of the IBHYS procedure are:

Step 1 Each hypothesis of � have to know the number of
training examples it matches in each class. These val-
ues allow the training examples to evaluate the rele-
vance of the hypotheses of �.

Step 2 The numbers of training examples matched by each
hypothesis have been modified (step 1). Some hy-
potheses that were relevant for a training example
� 	 � may not be relevant any more. This may happen
if the hypotheses matching � are all almost as relevant
as each other.

Step 3 Using � � � �, � and �, the operator HYPGEN

generates a set of hypotheses that will be individually
studied only if they are not yet in�. Whatever the de-
scription languages of the hypotheses are, all the gen-
erated hypotheses will be dealt with in the same way
(described in the steps 4 and 5).

Step 4 Each hypothesis generated by HYPGEN have to
know the amount of training examples it matches in
each class, allowing the training examples to evaluate
its relevance.

Step 5 The currently studied hypothesis � must be evalu-
ated by the training examples of � to measure its rel-
evance. For each training example � �� � �	 � , this
step updates the set �� of its relevant hypotheses (and
the value ��

�
).

Step 6 This step aims at removing the irrelevant hypothe-
ses of �. A hypothesis � is said to be irrelevant if
none of the training examples of � has chosen it (i.e.
��
�
� �).

3.3 The Apprentice algorithm

The Apprentice learns user’s habits every 1005 actions of
the user. It first searches the training examples that appear
in the last 100 actions of the trace, and invokes the pro-
cedure NewExample for each new training example it has
found.

We defined 3 operators (taking 2 situations in input) to
allow the Apprentice to learn the 3 kinds of situation pat-
terns defined above: noisy which builds a pattern which
has the commune characteristics, regarding the position, of

5Again, this value depends on the application field.

Algorithm 1: NewExample: the main procedure of IB-
HYS

Data: � a set of training examples
� a set of hypotheses
� the threshold to keep the hypotheses
� � � � a new training example

Result: Updating of � and � considering
begin

1 �� Update the number of examples
��matched by each hypothesis.
foreach � 	 � do

if MATCH(�,� � � �) then
��
�
� ��

�
� �;

�� Insert� � � � in the set of examples.
� � � � �� � � ��;

2 �� Update the set of relevant hypotheses
�� of each example in� .
foreach � 	 � do

foreach� ��
 �	 � do
SUBMIT(�,� ��
 �,�);

3 �� Treatment of hypotheses created thanks to.
foreach � 	 HYPGEN(� � � �, � � �) do

if � 	/ � then
4 �� Number of example matched

�� by� in each class.
foreach� ��
 �	 � do
if MATCH(�,� ��
 �) then

���� � ���� � �;

5 �� Submit the hypothesis to the examples.
foreach� ��
 �	 � do
SUBMIT(�,� ��
 �,�);

�� Insert� in the set of hypotheses.
� � �� ���;

6 �� Delete of� the hypotheses
�� witch are not relevant.
foreach � 	 � do

if ��
�
� � then � � �
 �;

end

the two situations and stars (denoting noise) for their differ-
ences, unordered: which returns the set of the actions of
the first situation, if and only if, these actions all appear in
the second situation, with no constraint on their positions,
and noisyUnordered. We also defined 3 classes of hy-
potheses that define their own method MATCH to test cov-
erage of training examples, and 3 hypothesis generators,
based on the 3 operators defined above.

Let us call knowledge basethe set of hypotheses pro-
duced by our IBHYS algorithm. After each action of the
user, the Assistant inspects the knowledge base and se-
lects all habits which hypothesis cover the last actions of
the user. The Apprentice then displays suggestions corre-
sponding to the related concepts in an non-obtrusive win-
dow. The user is free to take it into account or not. A sim-
ple mouse-click on one of these suggestions automatically
performs the related actions.

4 Experimental results

The Apprentice and the Assistant are currently used by the
first author. Experiments reported here where conducted
during the development of an “ASCII to HTML” translator,
on real data. We compare our IBHYS algorithm to ID3
which is the decision tree algorithm used in [14] to “explore
the potential of machine-learning methods to automatically
create and maintain ... customized knowledge for personal
software assistants”.

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10 12 14

Time

Description Length

Ibhys
ID3

Figure 3: Computing time in minutes versus de-
scription length

Figure 3 and 4 show that IBHYS outperforms ID3 re-
garding the computing time. The figure 3 plots the comput-
ing time versus the description length (cf. 2.2) on a trace of
1000 actions, and the figure 4, the computing time versus
the size of the trace, for a description length of 10 actions.
Time is given in minutes.

1 2 3 4
Accuracy Excess Hypotheses

Trace � � � ID3 Ibhys ID3 Ibhys ID3 Ibhys

100 31 4,48 10,76 51,00 50,00 29 25
200 81 16,73 34,60 47,50 48,00 64 69
300 128 60,15 49,25 46,67 47,33 92 130
400 174 39,77 36,29 47,00 50,25 106 169
500 230 73,49 75,81 41,20 42,00 121 217
600 279 69,95 76,17 38,17 38,17 125 228
700 329 59,04 68,67 38,14 38,14 160 272
800 374 45,45 69,09 37,50 37,75 171 278

Mean 46,13 52,58 43,40 43,96

Figure 5: Accuracy

0

50

100

150

200

250

300

350

400

450

500 1000 1500 2000

Time

Trace Length

Figure 4: Computing time in minutes versus trace
length

Table in figure 5 is a direct comparison of the respec-
tive accuracies of IBHYS and ID3. These tests were per-
formed on a trace of 1000 actions, with � � �� � (see
SUBMIT in section 3). These 1000 actions were split in
a training set and a test set. The leftmost column lists the
size of the training sets used, and column 1 lists the number
of training examples (repetitive sequences) the algorithms
have found in the training sets. Column 2 shows the predic-
tive accuracy on new examples. It shows that IBHYS had
correctly predicted a repetitive sequence in 52.58% of the
case, versus 46.13% for ID3. Column 3 lists the “excess
rate” that is, the number of time the algorithms have pre-
dicted erroneous repetitive sequences whereas no predic-
tion were expected. This excess rate value is very impor-
tant. Hight values means that the agent constantly bothers
the user with useless suggestions. IBHYS and ID3 have
almost the same excess rate. Finally, column 4 lists the
number of hypotheses the algorithms have learnt. Note that
both IBHYS and ID3 have an average decision time of 10
milliseconds.

Due to the fact that the Apprentice and the Assistant

have been implemented in Smalltalk 4.0, and that few pro-
grammers still use this environment, we could not find pro-
grammers to intensively test our agents. Of course, we are
working to adapt our agents to the newest version of the
Smalltalk environment. However, we can give examples of
the habits learnt during the experiments reported here (fig-
ure 6). Habit 1 means that the user systematically moves
and resizes a debugger he has opened after an error; habit
2 shows that the user systematically removes system com-
ments of new methods.

5 Conclusion

We have proposed a new approach, called IBHYS, and an
incremental algorithm with low computing time, for induc-
tive concept learning, particularly suited for learning inter-
face agents. This approach lets each training example build
a set of hypotheses that locally approximate the global tar-
get function, limiting the hypothesis search to a small por-
tion of the hypothesis space. Because training examples
can choose among several description languages to form
an hypothesis, and different description languages to form
different hypotheses, it allows to handle simultaneously hy-
potheses described in different languages. We presented an
application of this approach to learn user’s habits of inter-
active programming environments and propose an original
assistance to programmers based on two software agents,
the Apprentice and the Assistant. We showed, with exper-
imental results on real data, that IBHYS outperforms ID3
both in computing time and predictive accuracy.

IBHYS seems a promising approach for data-mining.
Further studies will be conducted to evaluate our IB-
HYS approach with respect to standard (Irvine collection)
machine-learning datasets. In the context of the Appren-
tice and the Assistant, an important limitation of IBHYS is
that it bounds in advance the length of the description and,
therefore, the length of the situation patterns searched. We
are investigating to bypass this limitation.

We are currently working to adapt the Apprentice and

1.
Situation pattern Repetitive sequence
ActionErreur(nil,*) ActionMenu(aDebugger,move)
ActionMenu(aDebugger,debug) ActionMenu(aDebugger,resize)

2.

Situation pattern Repetitive sequence
ActionSelect(aBrowser,
message selector and argument names ActionMenu(aBrowser,cut)
‘‘comment stating purpose of message’’
| temporary variable names |
statements)

Figure 6: Example of user’s habits

the Assistant to the newest version of the Smalltalk envi-
ronment. We hope that they will be soon available to full
time programmers for intensive tests.

Acknowledgements

We would like to thank Christophe Fiorio for his Algo-
rithm LaTeX style and his help in the preparation of the
final manuscript of this paper.

References

[1] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell.
Webwatcher: A learning apprentice for the world wide
web. In AAAI Spring Symposium on Information Gather-
ing, 1995.

[2] A. Caglayan, M. Snorrason, J. Jacoby, J. Mazzu, and
R. Jones. Lessons from open sesame!, a user interface learn-
ing agent. In Proceedings of PAAM96, pages 61–74, Apr.
1996.

[3] A. Cypher. EAGER: Programming repetitive tasks by ex-
ample. In Proceedings of ACM CHI’91, Programming by
Demonstration, pages 33–39, 1991.

[4] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. John Wiley and Sons, New York, 1973.

[5] O. Gascuel and G. Caraux. Distribution-free performance
bounds with the resubstitution error estimate. Pattern
Recognition Letters, 13:757–764, 1992.

[6] J. Hertz, A. Krogh, and R. G. Palmer. An Introduction to
the Theory of Neural Computation. Lecture Notes Volume
I. Addison Wesley, 1991.

[7] J. H. Holland. Adaptation in natural artificial systems. Uni-
versity of Michigan Press, Ann Arbor, 1975.

[8] R. C. Holte and C. Drummond. A learning apprentice for
browsing. In O. Etzioni, editor, Software Agents — Spring
Symposium. AAAI Press, Mar. 1994.

[9] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid iden-
tification of repeated patterns in strings, trees and arrays.
In 4th Annual ACM Symposium on Theory of Computing,
pages 125–136, Denver, Colorado, 1–3 May 1972.

[10] Y. Lashkari, M. Metral, and P. Maes. Collaborative interface
agents. In Proceedings of AAAI’94, pages 444–449, 1994.

[11] P. Maes. Agents that reduce work and information overload.
Communications of the ACM, Special Issue on Intelligent
Agents, 37(7):31–40, July 1994.

[12] P. Maes. Social interface agents: Acquiring competence by
learning from users and other agents. In O. Etzioni, editor,
Software Agents — Spring Symposium, pages 71–78. AAAI
Press, Mar. 1994.

[13] P. Maes and R. Kozierok. Learning interface agents. In
Proceedings of the 11th National Conference on Artificial
Intelligence, pages 459–464, Menlo Park, CA, USA, July
1993. AAAI Press.

[14] T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and
D. Zabowski. Experience with a learning personal assistant.
Communications of the ACM, Special Issue on Intelligent
Agents, 37(7):81–91, July 1994.

[15] T. M. Mitchell. Version Spaces: An Approach to Concept
Learning. PhD thesis, Electrical Engineering Dept., Stan-
ford University, 1979.

[16] J. Orwant. Heterogenous learning in the doppelgänger user
modeling system. User Modeling and User-Adapted Inter-
action, 4(2):107–130, 1995.

[17] T. R. Payne and P. Edwards. Interface agents that learn:
an investigation of learning issues in a mail agent interface.
Applied Artificial Intelligence, 11:1–32, 1997.

[18] W. Pohl. Learning about the user – user modeling and ma-
chine learning. In V. M. J. Herrmann, editor, ICML’96 Work-
shop Machine Learning meets Human-Computer Interac-
tion, pages 29–40, 1996.

[19] M. J. D. Powell. Radial basis functions for multivariable
interpolation: A review. In Algorithms for Approximation,
pages 143–167, Oxford, 1987. Clarendon Press.

[20] J. R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1(1):81–106, 1986.

[21] C. Rich and R. C. Waters. The programmer’s apprentice.
Computer, pages 11–25, Nov. 1988.

[22] J. C. Schlimmer and L. A. Hermens. Software agents: Com-
pleting patterns and constructing user interfaces. Journ. of
AI Research, 1:61–89, Nov. 1993.

[23] R. Waters. The programmer’s apprentice: Knowledge-based
program editing. IEEE Trans. Software Engineering, SE-
8(1):1–12, Jan. 1982.

[24] S. Wu and U. Manber. Fast text searching allowing errors.
Communications of the ACM, 35(10):83–91, Oct. 1992.

[25] K. Yoshida and H. Motoda. Automated user modeling for
intelligent interface. Int. J. of Human Computer Interaction,
3(8):237–258, 1996.

