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Abstract

Adaptive Programming Environment (APE), a software assistant embedded
into the VisualWorks Smalltalk interactive programming environment,
watches what the user is doing, draws on machine learning to learn the
user’s habits, and afterward offers to complete repetitive tasks on his or her
behalf. The goal of the APE project was threefold: (1) to design an assistant
able to automate repetitive tasks with a minimal amount of user’s interven-
tion, (2) to design an assistant able, as in programming-by-example (also
called programming-by-demonstration) systems, to replay and automate
complex repetitive tasks, and (3) to design an assistant that disrupts the
user’s work as little as possible—that is, that makes the right suggestion at
the right moment. As a consequence, APE employs a machine-learning al-
gorithm we have specifically designed to learn efficiently and rapidly not
only what to suggest to the user but also when to make a suggestion.

14.1 Introduction

Entering repetitive sequences of commands (or repetitive tasks) is a well-
known characteristic of human-computer interaction. To deal with this
problem, early works have associated macro or script languages with inter-
active environments—for example, macros in Excel or Lisp scripts in
Emacs. They allow the user to write a program that can be invoked later to
perform a sequence of commands automatically. The limitation of this ap-
proach is that, generally, users do not want to or cannot spend too much ef-
fort on programming: writing a program often takes longer than performing
a sequence of commands manually disrupts the user’s work flow and re-
quires programming knowledge that many users do not have. Recent ad-
vances to overcome these limitations came from different correlated fields
of research: programming by demonstration (PBD), predictive interfaces
and learning interface agents.

PBD systems (Cypher et al. 1993) let the user demonstrate what the
task to be automated should do and then create a program from this dem-
onstration. Macro recorders were the first examples of PBD systems, but
they were limited because recorded commands are too specific (rote learn-
ing, no parameterization) to be reused. Sophisticated PBD systems, such as
Mondrian (Lieberman 1993), create programs containing variables, iterative
loops, or conditional branches from observing user’s actions. Although PBD
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does not require programming knowledge because the user does not have
to write code, demonstrating a program takes time and disrupts the user’s
work flow.

Predictive interfaces (Darragh and Witten 1991) and learning interface
agents (Maes 1994) observe the user while he manipulates the environ-
ment. They try to learn from the correlations between situations the user
has encountered and the corresponding commands he has performed, and
to predict after each new command what the next one will be. They assist
him by afterward predicting and suggesting some commands to perform
automatically. For instance, CAP (Mitchell et al. 1994), an assistant for man-
aging meeting calendars, suggests default values regarding meeting dura-
tion, location, time, and day of week. OpenSesame! (Caglayan et al. 1997)
runs in the background on Macintosh system 7 and offers to open or close
files or applications, to empty trash, or to rebuild the desktop on the user’s
behalf. WebWatcher (Armstrong et al. 1995), an assistant for the World Wide
Web, suggests links of interest to the user. Maes’s (1994) assistants for han-
dling electronic mail, scheduling meetings, and filtering electronic news ad-
vise the user for some application-specific operations such as managing
mail, scheduling meetings, or selecting articles in news.

ClipBoard (Motoda 1997), an interface for Unix, tries to predict the next
command the user is going to issue. The main advantages of these systems
is that they do not require programming knowledge, nor do they disrupt the
user’s work flow because commands are automatically suggested. However,
they do not create programs and thus only suggest single actions and not
sequences of actions. Furthermore, the set of actions that most of these sys-
tems (expect ClipBoard and WebWatcher) can suggest is small and known
in advance.

Eager (Cypher et al. 1993) is one of the most famous attempts to bring
together PBD and predictive interfaces. Eager is an assistant for Macintosh
Hypercard. When Eager detects two consecutive occurrences of a repetitive
task in the sequence of a user’s actions, it assumes they are the first two iter-
ations of a loop and proposes to complete the loop. It is a PBD system be-
cause it is able to infer loops from observing a user’s actions and to replay
more than one action at once; it is a predictive interface because it is able to
make suggestions without any user intervention. It is able to perform loop
iterations until “a condition” is satisfied or following some typical patterns,
such as days of the week or linear sequence of integers. Finally, Eager has an
important characteristic: it makes a suggestion only after two consecutive
occurrences of a repetitive task. As a consequence, it knows exactly when to
make a suggestion and which suggestion to make. However, this character-
istic is a limitation because in practice such occurrences are frequently not
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consecutive but interleaved with other actions. Familiar (see chap. 15) takes
on Eager’s idea and extends it in many ways but does not address this
limitation.

The goal of our work has been to design an assistant operating in a con-
text where the number of possible user actions and possible values for the
parameters of these actions are large, where repetitive sequences are not
known in advance and not consecutive, and where these sequences are able
to predict and replay repetitions composed of several actions, containing
loops or conditional branches. None of the previously noted works ad-
dresses all these issues simultaneously. In such a context, a key issue is to
design an assistant that makes “the right suggestion at the right moment”;
an assistant that constantly bothers the user with a lot of wrong suggestions
is useless because the user would rapidly ignore it. Wolber and Myers’s
chapter (Chapter 16) suggests a solution to this problem in the context of
PBD system. It proposes to allow the user to demonstrate “when” to make a
suggestion as well as “what” to suggest. APE takes another approach. It em-
ploys machine-learning techniques to learn efficiently and rapidly when to
make a suggestion and which sequence of actions to suggest to the user.

As a case study, we present the APE (Adaptive Programming Environ-
ment) project. APE is a software assistant integrated into the Visualworks
Smalltalk programming environment. Like Eager and Familiar, APE is able
to detect loops and to suggest repetitive tasks iteratively.1

In the following sections we describe APE, demonstrating what it does
and how it can be used. We explain what kind of repetitive tasks it is able to
automate and how it automates them. We show what makes learning users’
habits difficult, and we describe what and how APE learns. We compare ex-
perimental results of alternate approaches. Finally, we summarize lessons
learned from this study and give perspectives for future research.

14.2 Overview of APE

APE is made of three software agents—an Observer, an Apprentice, and an
Assistant—working simultaneously in the background without any user in-
tervention. Table 14.1 defines our terminology, and Figure 14.1 describes
the role of each agent.
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Table 14.1
Definition of terms used throughout this chapter.

Term Definition

Action A high-level intervention of the user on the environ-
ment (as opposed to low-level interventions such as
mouse movements and keystrokes), window manipula-
tion, menu item selection, button pressing, text enter-
ing, etc. An action is parameterized by, among other
things, the tool (e.g., Browser, Debugger, Text Editor) in
which it has been performed.

Trace A history of the user’s actions
Task A sequence of actions of the trace
Repetitive task A task occurring several times in the trace
Situation A sequence of actions of the trace of a given size n, n

being a parameter of the learning algorithms
Current situation The last n actions of the trace
Situation pattern A regular expression matching one or more situations
Habit A pair of “set of situation patterns—repetitive task”

such that the situation patterns match the situations in
which the user performs the repetitive task.

When-set A set of situation patterns that match the situations in
which the user has performed repetitive tasks

What-set A set of habits

builds

searches

learns

inspects

suggests

observes
watches

The Observer

The Apprentice

The User The Assistant

Trace

User’s Habits

Figure 14.1
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14.2.1 The Observer

The Observer traps a user’s actions, reifies them into dedicated Smalltalk
objects (instances of classes shown in Figure 14.2), and stores them in the
trace. It then sends messages in the background to the Apprentice and the
Assistant to notify them that the user has performed a new action.

For example, when the user selects the “doIt” command of a text editor
to evaluate an expression, an instance of the class ActionEditor is created
and references to the involved text editor, the evaluated text, and the string
“doIt” are stored, respectively, in the toolID, text, and action slots. Figure
14.3 shows an example of a part of a trace where each line is a simplified
textual representation of an action (for clarity, we only show the most infor-
mative action parameters). Different classes represent the actions held in
the different tools of the environment (browser, debugger) because they
hold different versions of methods used by the learning algorithm, which
does not handle all kinds of actions equally.

In this first implementation, trapping the user’s actions has been
achieved by directly modifying methods (up to 170) of the user interface
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Figure 14.2
Object
Action (type toolName toolID date display)

ActionApplication (action)
ActionBrowser (parameter textMode

selected)
ActionDebugger ( )
ActionFileBrowser ( )
ActionParcelBrowser ( )

ActionChangeList (index plug)
ActionEditor (text index which)
ActionInspector (parameter on)
ActionLauncher ( )
ActionParcelList ( )
ActionWindow ( )

ActionError (error object message)

Smalltalk hierarchy of action classes.
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layer in which the user’s actions are fired. This result is not very satisfactory
and should be improved in the future versions. It is a consequence of the
lack of a standard mechanisms, such as the “advice/trace” mechanisms of
Interlisp (Teitelman 1978) or “wrappers” mechanisms, of Flavors (Moon
1986), in the Smalltalk environment we have used. Such mechanisms have
been developed for Smalltalk (see, e.g., (Böcker and Herczeg 1990), but
none have been integrated in the Smalltalk environment we have used.

14.2.2 The Apprentice

The Apprentice activity is twofold: (1) It detects the user’s repetitive tasks,
and (2)it examines the situations in which repetitive tasks have been per-
formed and uses two machine-learning algorithms to learn situation pat-
terns and build two sets:

• the When-set of situation patterns matching the situations in which the
user has performed the detected repetitive tasks, and

• the What-set of the user’s habits (i.e., pairs “set of situation patterns—re-
petitive task,” where the set of situation patterns reflects all the situa-
tions in which a given repetitive task has been performed).

The Apprentice is able to learn two kinds of situation patterns: situation
patterns containing wild cards (i.e., a special character—noted “.”—that
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Figure 14.3
ActionEditor(anEditor,’anArray

stupidMesage’,’doIt’)
ActionError(‘doesNotUnderstand’,’stupidMessa

ge’)
ActionDebugger(aDebugger,debug)
ActionWindow(aDebugger,’move’)
ActionWindow(aDebugger,’resize’)

A sample of the trace where the user opens, moves and resizes a debugger to correct
an error.
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matches any single action or action parameter) and unordered situation
patterns (the order in which some actions are performed does not matter)
containing wild cards. The number of wild cards is not limited.

An occurrence of a situation pattern containing a wild card is learned
when, for example, the user has examined several methods in a Smalltalk
browser, named “=” in the testing protocol, for various classes of the
MyGraphics category (see Figure 14.10 on page XXX). The detected repeti-
tive task is “select protocol(testing), select method(=),” and the learned sit-
uation pattern is “select category(MyGraphics), select class(.).”

14.2.3 The Assistant

Observing the user, the Assistant uses the When-set to determine when to
make a suggestion to the user; if it has to, it uses the What-set to determine
what to suggest. More precisely, as shown in Figure 14.4, after each user’s
action, it inspects the What-set to answer the question “Is the user going to
perform a repetitive task?” If the last user’s actions match none of the situa-
tion patterns of the When-set, the answer is “no,” and the Assistant makes
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Figure 14.4
Last user’s actions

When-set
Is the user going to perform

a repetitive task?

What-set
Which repetitive task is he

going to perform?

No suggestion

SuggestionNO

A A . . . A1 2 n

T T or T T31 or . . .2 m

Y
E
S

The Assistant inspects the When-set and the What-set to make suggestions.
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no suggestion. Otherwise, the answer is “yes,” and the Assistant inspects the
user’s habits (What-set) to answer the question “Which repetitive task is the
user going to perform?” It selects all habits2 with a situation pattern that
matches the current situation. Then, it displays in the Assistant window
(see Figure 14.5), without interrupting the user’s work, the actions compos-
ing the repetitive task of the selected habits. The user can ignore this win-
dow and these suggestions (nonobtrusive behavior) or mouse-click on one
of them. In the latter case, the Assistant successively performs the actions
and removes the suggestions from its window.

14.3 Illustrative Examples

This section provides four examples of what APE is able to learn and
suggest.

14.3.1 Example 1

Repetitive tasks frequently appear while testing applications. Consider a
user testing a multiprocess simulation of the classical “n-queens” problem,
implemented by a main-class Board. Figure 14.5 shows two VisualWorks
snapshots including both an Assistant window, labeled “Assistant,” and the
main APE window, labeled “Ape Agents.” The Watch button shows that the
three agents are active. In the top snapshot, labeled “situation before firing
a habit,” the user has selected, in a simple editor (named Workspace), a
Smalltalk expression to create a board and to initiate the computation and
is about to select the InspectIt item of that editor menu. Because the user is
not performing this activity for the first time, a repetitive sequence has been
detected and a habit has been learned, a situation pattern of which matches
the current situation. The Assistant thus fires the habit—that is, displays in
its window a text describing the proposed repetitive sequence of actions
(opening four inspectors in cascade to show a particular field of a com-
posed object). This repetitive task being exactly what the user intends to do,
he mouse-clicks on that text to perform the sequence of actions leading to
what is shown in the bottom snapshot labeled “situation after a habit has
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Figure 14.5
Situation before firing a habit

Situation after a habit has been fired

The Assistant suggests to open four inspectors...

The user mouse-clicked on the proposition

VisualWorks

VisualWorks

Workspace

Assistant

Assistant

Ape Agents

Ape Agents

Board

Semaphore

Process

MethodContext

| aBoard |

| aBoard |

aBoard Board newboardForSize: 4=

aBoard Board newboardForSize: 4=

Habit: 5: Editor inspectIt Inspector field: busy,inspectFeld Inspector field: firstLink, inspectField
Inspector field: suspendedContext, inspectField CompiledCodeInspector field: sender

^aBoard play

^aBoard play

self
size
content
busy
messages
beings
activeBeing

Semaphore (a
Process in

Queen>moveFrom:

self
firstLink
lastLink
excessSignal self

nextLink
suspendedCo
priority
myList
interruptProte

self
– source
–byte codes
method
pc
sender
receiver
stackp
stack

1

2

The user has just (1) selected an expression to create and test an instance of class
“Board.” (2) The Assistant detects a known situation and suggests to execute a regis-
tered repetitive sequence of actions, displayed in the Assistant window, that evaluates
the expressions and opens four inspectors in cascade, leading to what is shown in the
bottom snapshot.
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been fired.” In this case, the user has performed seven actions in a secure
way with a single mouse click.

14.3.2 Example 2

Repetitive tasks also frequently appear while debugging applications. Con-
sider the same user now debugging his “n-queens” application. The user
has selected a Smalltalk expression (see Fig. 14.6, top snapshot, arrow 1) in
the Workspace window, the evaluation of which (arrow 2) has raised an ex-
ception leading to the opening of an Exception window (arrow 3). Because
this situation matches a situation pattern learned by the Apprentice, the As-
sistant offers to perform the related repetitive task: “open, move, resize a
debugger and select stack index 5.” This repetitive task is exactly what the
user intends to do, and he mouse-clicks on the proposition (arrow 4), en-
tailing the creation and correct positioning of a debugger window, as shown
in the bottom snapshot.

14.3.3 Example 3

This examples shows that APE is able to automate sequences of actions
iteratively (in a loop), even if the iterations are not consecutive. Suppose a
user intends to modify the method “area” of all the classes belonging to a
category named MyGraphics. Before working on a method “area,” she wants
to save it (back it up). She has first selected and saved the area method of
the Circle class by performing the following actions: select the MyGraphics
category (Figure 14.7[a], arrow 1), select the Circle class of that category (ar-
row 2), select the accessing protocol (arrow 3) and the area method of that
protocol (arrow 4), and select “file out as . . .” in the browser menu (arrow 5)
to save the method. Later, after having completed various tasks such as cre-
ating a new Triangle class, the user has selected and saved the area method
of the Diamond class (Figure 14.7[b]). At this point, the Apprentice has de-
tected two nonconsecutive occurrences of the repetitive task “select the
accessing protocol, select the area method, file out as.” The action preced-
ing the first occurrence of this repetitive task is “select the Circle class” and
the action preceding the second occurrence is “select the Diamond class.”
Because classes Circle and Diamond belong to the MyGraphics category,
it infers that the user intends to save the area method of all classes of
MyGraphics category. Hence, it assumes that these two occurrences are two
iterations of the following loop: “For all classes of the MyGraphics category,
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Figure 14.6
Situation before firing a habit

Situation after a habit has been fired

The Assistant proposes to open a debugger

The user mouse-clicked on the proposition

VisualWorks

Assistant

Assistant

VisualWorks

Unhandled exception: Subscript out of bounds: 0

Workspace

Ape Agents

Exception

Ape Agents

| aBoard |

| a

aB

^a

aBoard: Board newboardForSize: 4=

Unhandled exception: subscript
out of bounds: 0

Array(Object)>>subscriptBoundsError:

Array(Object)>>at:put:

Board>>at:put:

Board>>moveRequest:from:tc

Queen>>moveFrom:

moveFrom: p

Array(Object)>>subscriptBoundsError:
Array(Object)>>at:put:
Board>>at:put:
board>>moveRequest:from:tc
Queen>>moveFrom:

self
name
position
board
busy

p
n
b
dx
dy

Habit: 3: Debugger open, move, resize, selectStackIndex: 5

^aBoard play

3
1 2

4

| nb |

busy wait.

p position ifFalse: [^self].

1 to:1 do: [:dx |

1 to: 1 do: [:dy |

(dx 0 and: [dy 0]) ifFalse: [n: (px + dx)@(py dy).

board busy wait

b: (board moveRequest: self from: postition to: n).

position: n.

board busy signal.

b ifTrue: [busy signal. position:= n. ^self]]]].

=
−

−
= = = +

=
=

The user has (1) typed and (2) evaluated an expression that (3) raised an exception.
(4) The Assistant offers to open, move, and resize a debugger, and to select the fifth
item in the debugger stack, as the user typically does (top snapshot). The user has
mouse-clicked on the proposition, and the Assistant has performed these actions, re-
sulting in a well-positioned debugger displaying a user’s method (bottom snapshot).
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do select the accessing protocol, select the area method, file out as.” It
learns a habit. As a consequence, as soon as the user selects the MyGraphics
category, and whatever actions she has performed before, the Assistant pre-
dicts that she is about to save one more method area and offers to com-
plete the loop (Figure 14.7[c]). If the user mouse-clicks on the suggestion in
the Assistant window, the Assistant saves all area methods not yet saved
(not shown).

14.3.4 Example 4

This last example shows that APE is able to help the user write repetitive
pieces of code. Suppose a user has written several similar methods named
“=”, for various classes of the MyGraphics category in a browser. He has just
selected the testing protocol (Figure 14.8, arrow 1) and is about to write a
new method “=”. The Assistant offers to insert a text template (arrow 2)
containing some repetitive code (the asterisks denote nonrepetitive code).
The user has mouse-clicked the suggestion, and the template has been in-
serted (arrow 3—“situation after a habit has been fired”—bottom snapshot).

14.4 Detecting Repetitive Tasks

This section explains what kinds of repetitive tasks the Apprentice is able to
detect in the trace and how the Assistant automates them.

14.4.1 Repetitive Sequences of Actions

Detection of repetitive sequences of actions is achieved using a classical
text-searching algorithm (Karp, Miller, and Rosenberg 1972). “Open, move,
resize a debugger and select stack index 5” (Figure 14.6) is an example of a
repetitive sequence of actions. To automate a repetitive sequence of ac-
tions, the Assistant simply replays the actions composing it.

14.4.2 Loops

Each time the Apprentice detects a repetitive task, it supposes that the
corresponding sequence of actions could be the “body” of a loop and that
each occurrence of the sequence could be an iteration of the loop. It then
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Figure 14.7

(a)

System Browser

Assistant

VisualWorks Ape Agents

1

2
3 4

5

(b)

System Browser

Assistant

VisualWorks Ape Agents

(c)

System Browser

Assistant

VisualWorks Ape Agents

(a) The user saves (“file out as . . .” command) the method area of the class Circle. (b) After having com-
pleted various tasks, the user also saves the area method of class Diamond. (c) The Apprentice has de-
tected a loop in the user’s actions and has learned a habit. The Assistant offers to complete the loop (to
save all area methods) as soon as it detects that the user is about to save one more area method.
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(a)

System Browser

Assistant

VisualWorks Ape Agents

1

2

Figure 14.8

The user has written several similar methods named “=”, for various classes of
MyGraphics. He has just selected the testing protocol (1) and is about to write a new
method “=” for class Square. The Assistant offers to insert a template (2). The user
has mouse-clicked the suggestion, and the template has been inserted (3).

(b)

System Browser

Assistant

VisualWorks Ape Agents

3
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searches for relations between the actions preceding (or following) each it-
eration to determine the loop “variable.” Example of such relations are
classes belonging to the same category, methods belonging to the same
class, subclasses of the same class, and so forth. Example 3 in Section 14.3
illustrates this case. The body of the loop is “Select the accessing protocol,
select the area method, file out”; the action preceding the first iteration is
“Select the Circle class”; and the action preceding the second iteration is
“Select the Diamond class.” The relation between these two actions is that
classes Circle and Diamond belong to the same category. Thus, the Appren-
tice then infers that the selected class is the loop variable and builds the fol-
lowing repetitive task: “For all classes x of MyGraphics, select the x class, se-
lect the accessing protocol, select the area method, file out.” To complete a
loop, the Assistant plays the loop body for all the remaining values of the
loop variable.

14.4.3 Writing of Repetitive Pieces of Code

To detect these repetitive tasks, the Apprentice compares the methods cre-
ated by the user, line by line, using a simple string match comparison func-
tion. When it finds a set of methods that have a certain amount of their re-
spective code in common, it assumes it has found a repetitive portion of
code and create a template (Figure 14.8). To replay a writing of a repetitive
piece of code, it inserts the template in the code window of the browser
(again, see Figure 14.8).

14.4.4 Repetitive Corrections of (Simple) Programming Errors

The Apprentice compares the methods the user has modified and the way
he did it. When it finds a set of method in which the user has replaced a
portion C with another portion of code C′, it assumes it has found a repeti-
tive correction and records the replacement. To replay a repetitive correc-
tion of code, it replays the recorded code replacement.

14.5 Learning User’s Habits

Once it has detected the repetitive tasks, the Apprentice has to learn situa-
tion patterns to build the When-set and the What-set. In this section, we
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explain what makes this learning task difficulty and how we overcome this
difficulty.

14.5.1 What Makes the Problem Difficult?

We present in this section the requirements that direct the choice of the al-
gorithms that the Apprentice uses to learn the situation patterns of the
When-set and the What-set. Let us recall that the When-set is a set of situa-
tion patterns that match the situations in which the user has performed re-
petitive tasks; the What-set is a set of habits (i.e., a set of pair “situation pat-
terns—repetitive task”). Let AL1 denote the algorithm used to build the
When-set and AL2 denote the algorithm used to build the What-set.

• Requirement 1: Low training time. We distinguish “long-life” and “short-
life” repetitive tasks. Short-life repetitive tasks are related to specific is-
sues and appear in a small section of the trace, and the corresponding
situation patterns have to be learned very rapidly from a few situations.
Long-life repetitive tasks can reflect the general user’s habits and can re-
quire a very long trace to be detected. Thus, the Apprentice is, on the
one hand, able to learn situation patterns very rapidly on a small section
of the trace to capture short-life tasks and, on the other hand, can also
consider very long traces corresponding to several work sessions. Let us
call training time the time required by a machine-learning algorithm to
learn situation patterns. AL1 and AL2 must have a low training time.

• Requirement 2: Low prediction time. Of course, the Assistant is able to
decide when to make a suggestion and which suggestion to make very
rapidly. Let us call prediction time the time it takes to the Assistant to in-
spect a set of situation patterns and to determine which ones match the
current situation. The prediction time depends on the way AL1 and AL2
represent the learned situation patterns. This prediction time must be
very low to allow the Assistant to make suggestions (or to decide not to
make a suggestion) after each user’s actions.

• Requirement 3: User-intelligible situation patterns. We want the Appren-
tice to represent situation patterns in a humanly understandable way.
This is not a critical requirement, but it allows the user to inspect or edit
the learned habits. Comprehensible and controllable interfaces give the
user a sense of power and control.

• Requirement 4: AL1—Low error rate. Finally, to be viable our Assistant
has to make the “right suggestion at the right moment.” This means that
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it has to determine correctly when to make a suggestion. AL1 is said
to “make” an error in two cases: (1) when one of the situation patterns
it has learned matches the current situation but the user is not about
to perform a repetitive task or (2) when none of its situation patterns
matches the current situation but the user is about to perform a repeti-
tive task. In case 1, the Assistant makes suggestions yet no suggestions
should be offered, in case 2, it makes no suggestion when doing so
would benefit the user. AL1 must have a low error rate.

• Requirement 5: AL2—Low error rate and low generalization. The Assis-
tant also has to determine correctly what to suggest. AL2 is said to
“make” an error in two cases: (1) when a situation pattern of a habit
matches the current situation but the user is not about to perform the
repetitive task of that habit or (2) when a situation pattern of one of the
habits matches the current situation but AL1 has made an error3 and the
user is not about to perform a repetitive task. In case 1, the Assistant
suggests the wrong repetitive task; in case 2, it makes suggestions but no
suggestion is expected. Case 2 may occur if the situation patterns of the
habits are too general. A too-general situation pattern will be matched
by too many situations and the corresponding task proposed too fre-
quently. AL2 must have a low error rate to make few errors in case 1, but
it also has to generalize as little as possible to avoid too-general situation
patterns in case 2.

14.5.2 Which Algorithms?

Various kinds of algorithms have been proposed in the field of machine
learning. Concept learning, neural networks, and reinforcement learning al-
gorithms do not meet requirement 1; instance-based algorithms do not
meet requirement 2; instance-based, statistical, neural networks and rein-
forcement learning algorithms do not meet requirement 3.

Eligible kinds of algorithms are decision-tree algorithms because they
miss none of the requirements 1, 2, or 3. These algorithms, like most of the
machine-learning algorithms, have a low error rate and meet requirement
4. Although they have not been designed to generalize as little as possible,
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they are better suited for requirement 5 than instance-based or statistical
algorithms.

Decision-tree learning algorithms have notably been used in CAP
(Mitchell et al. 1994). The state-of-the-art decision-tree learning algorithm
is C4.5 (Quinlan 1993).4 C4.5 has low computing time (incremental versions
of C4.5 exist) and is suited to learn the When-set (AL1). However, our tests
(see Section 14.6) have shown that it learns too-general situation patterns
and is not suited to learn the What-set (AL2). Hence, APE employs C4.5 to
learn the When-set and a new algorithm we have designed to learn the
What-set.

14.5.3 A New Algorithm

Our new algorithm, named IDHYS, is a concept-learning algorithm inspired
by candidate elimination algorithm (Mitchell 1978).

Inductive concept learning consists of acquiring the general definition
of a concept from training examples of this concept, each labeled as either a
member (or positive example) or a nonmember (or negative example) of
this concept. Concept learning can be modeled as a problem of searching
through a hypothesis space (set of possible definitions) to find the hypothe-
sis that best fits the training examples (Mitchell 1982). Learning user’s hab-
its is a concept-learning problem. All the situations preceding a repetitive
task T can be seen as positive examples of the concept “situations in which
the user is going to perform repetitive task T.” The situations preceding any
other task can be considered as negative examples of this concept. The
searched definition is a set of situation patterns that match the situations in
which the repetitive task T has been performed.

IDHYS searches the hypothesis space of the conjunctions of two situa-
tion patterns, one for each kind of situation pattern defined in Section 14.2:
containing wild cards or unordered containing wild cards. It learns by
building hypotheses that are the most specific generalizations of the posi-
tive examples. It processes the positive examples incrementally. It starts
with a very specific hypothesis (indeed, the first positive example itself) and
progressively generalizes this hypothesis with the subsequent positive ex-
amples. IDHYS does not build hypotheses for the negative examples, which
are only used to bound the generalization process. This incremental bot-
tom-up approach makes IDHYS not sensitive to actions with large sets of
possible values for their parameters. As a consequence, it has a low com-
puting time. Our test (see the next section) shows it also has a low error rate
and does not overgeneralize to build the situation patterns.
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Description of an earlier version of IDHYS can be found in Ruvini and
Fagot (1998) and of a more complete one in Ruvini 2000).

14.6 Use and Experimental Results

APE, as described in the prior section, is implemented and experimentally
used by ourselves and by a pool of fifty students enrolled in a Smalltalk
course at the master’s level. This section first analyzes user feedback and
then describes and analyzes the technical experimental results.

Concerning user feedback, let us recall that our users are Smalltalk be-
ginners, we do not yet have feedback from experienced programmers.
About 70 percent of our students have considered the Assistant window for
approximately ten minutes and then have forgotten it. Fortunately, results
from the remaining 30 percent have been very interesting. The main rea-
sons invoked by those who have not used the suggestions are

• the burden of looking at the Assistant window since nothing, except a
modification inside this window, indicates when a suggestion is made;

• the difficulty of reading suggestions presented as a sequence of actions.

This feedback indicates that a great deal of work in that direction remains—
namely, how to gently alert people and provide a better visualization of
what the Assistant suggests? In addition, the interesting point is that those
who have made the effort to use the tool have rapidly learned how to use it
efficiently and have taken advantages of its capabilities. After a while, those
users have learned (1) which suggestions are regularly made and which
ones interest them and (2) when the suggestions are made. In other words,
they have learned to take a look at the Assistant window when they are
about to perform a repetitive task and when they do know that the sugges-
tion will be made. The students have been able to anticipate APE’s sugges-
tions because APE has a low excess rate and makes few wrong suggestions.

Concerning technical results, APE correctly works and makes the sug-
gestions we expected it to. It also makes many suggestions we did not think
of. We report here experiments conducted on ten traces of 2,000 actions,
collected during students’ usage of the software.

How well does APE assist its users in practice? One way to answer this
question is to train APE on a part of a trace (called the train trace) and then
to test it on another part (called the test trace) to see how often one of its
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suggestions coincides with user’s actions.5 Figure 14.9 plots these data. The
horizontal axis gives the size of the train traces and the test traces used. APE
employs C4.5 to learn the When-set and IDHYS to learn the What-set de-
noted by “C4.5-IDHYS”).

However, as a comparison, we also report results when the Apprentice
employs C4.5 to build both the When-set and the What-set (denoted by
“C4.5-C4.5”), and when it learns the What-set only (and not the When-set)
with C4.5 and IDHYS, respectively (denoted by “C4.5” and “IDHYS”).The
percentage of correct suggestions (a) is the percentage of repetitive tasks
correctly suggested by the Assistant. The percentage of excessive sugges-
tions (b) is the percentage of actions of the test trace not preceding a repeti-
tive task for which the Assistant has made a suggestion. These percentages
have been evaluated for a situation length varying from 1 to 10, and Figure
14.9 presents average results. This figure shows that

• the use of the When-set decreases the amount of excessive suggestions
without decreasing the amount of correct suggestions,

• employing IDHYS to learn the What-set leads the Assistant to make less
excessive suggestions and to suggest correctly more repetitive tasks, and

• the percentage of excessive suggestions increases with the trace size (see
“C4.5-IDHYS”).

Both the percentage of correct suggestions and the percentage of exces-
sive suggestions increase with the situation length (not shown here). This
shows that there is a trade-off between finding an assistant that makes few
but correct suggestions (and perhaps misses some repetitive tasks) and
finding one that constantly bothers the user with suggestions. Practically,
we have chosen a learning frequency of 100 actions and a situation length
of 3 actions. In this case, APE correctly suggests 63 percent of the repetitive
tasks and makes an excessive suggestion for only 18 percent of users’ ac-
tions. The average size of the repetitive tasks suggested by the Assistant dur-
ing this experiment was seven actions (minimum, three; maximum, ten).

Another important question is how long it takes APE to learn users’ hab-
its. in practice, it takes APE fifteen seconds (measured on a PC with a 133-
Mh processor) to learn users’ habits (i.e., both the When-set and the What-
set) from a trace containing 100 actions. A 100-action trace corresponds to
about six minutes of user work. In other words, for every six minutes of user
work, APE spends fifteen seconds to learn new habits. This result is quite
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satisfactory. Note also that the Assistant makes suggestions (i.e., inspects
the When-set and the What-set) in a matter of milliseconds.

14.7 Conclusion and Prospects

APE is one more step toward assistants that bring together programming by
demonstration and predictive interfaces. It works and operates in a context
in which the number of possible actions and possible values for the param-
eters of these actions are large and repetitive sequences are not known in
advance and not consecutive. It is able to replay repetitions composed of
several actions and containing loops. The lessons learned from this work
are as follows:

• Minimizing the amount of wrong suggestions is an important issue. The
system has to suggest the “replaying” of the right repetitive task at the
right moment.

• Learning when to make a suggestion as well as what to suggest de-
creases the number of incorrect suggestions.

• The system must not learn too general habits. We have shown that our
new machine-learning algorithm designed to learn habits reduces the
amount of incorrect suggestions without degrading the quality of these
suggestions.

• It is possible to learn a user’s habits to anticipate repetitive tasks. Experi-
mental tests have shown that APE is usable and efficient: it learns a
user’s habits in a matter of seconds and anticipates 63 percent of the re-
petitive tasks. It makes irrelevant suggestions for only 18 percent of the
user’s actions.

Concerning future work, it is clear that one of the main remaining issues
is to present the suggestions made by the Assistant in a more attractive way.
Programming by demonstration studies have addressed the problem of cre-
ating a graphical representation of a program or a sequence of actions, and
they offer a direction for future research.

Although the integration of APE into a programming environment is an
originality, it is not restrictive. APE could be integrated in other interactive
environments such as Microsoft Windows, X window system, or Apple
MacOS.
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